Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1995 Mar;7(3):259–270. doi: 10.1105/tpc.7.3.259

Impaired photoassimilate partitioning caused by phloem-specific removal of pyrophosphate can be complemented by a phloem-specific cytosolic yeast-derived invertase in transgenic plants.

J Lerchl 1, P Geigenberger 1, M Stitt 1, U Sonnewald 1
PMCID: PMC160780  PMID: 7734961

Abstract

Constitutive expression of the Escherichia coli ppa gene encoding inorganic pyrophosphatase resulted in sugar accumulation in source leaves and stunted growth of transgenic tobacco plants. The reason for this phenotype was hypothesized to be reduced sucrose utilization and loading into the phloem. To study the role of PPi in phloem cells, a chimeric gene was constructed using the phloem-specific rolC promoter of Agrobacterium rhizogenes to drive the expression of the ppa gene. Removal of cytosolic PPi in those cells resulted in photoassimilate accumulation in source leaves, chlorophyll loss, and reduced plant growth. From these data, it was postulated that sucrose hydrolysis via sucrose synthase is essential for assimilate partitioning. To bypass the PPi-dependent sucrose synthase step, transgenic plants were produced that express various levels of the yeast suc2 gene, which encodes cytosolic invertase, in their phloem cells. To combine the phloem-specific expression of the ppa gene and the suc2 gene, crosses between invertase- and pyrophosphatase-containing transgenic plants were performed. Analysis of their offspring revealed that invertase can complement the phenotypic effects caused by the removal of PPi in phloem cells.

Full Text

The Full Text of this article is available as a PDF (2.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amasino R. M. Acceleration of nucleic acid hybridization rate by polyethylene glycol. Anal Biochem. 1986 Feb 1;152(2):304–307. doi: 10.1016/0003-2697(86)90413-6. [DOI] [PubMed] [Google Scholar]
  2. Bevan M. Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res. 1984 Nov 26;12(22):8711–8721. doi: 10.1093/nar/12.22.8711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bouche-Pillon S., Fleurat-Lessard P., Fromont J. C., Serrano R., Bonnemain J. L. Immunolocalization of the Plasma Membrane H+ -ATPase in Minor Veins of Vicia faba in Relation to Phloem Loading. Plant Physiol. 1994 Jun;105(2):691–697. doi: 10.1104/pp.105.2.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dickinson C. D., Altabella T., Chrispeels M. J. Slow-growth phenotype of transgenic tomato expressing apoplastic invertase. Plant Physiol. 1991 Feb;95(2):420–425. doi: 10.1104/pp.95.2.420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fang R. X., Nagy F., Sivasubramaniam S., Chua N. H. Multiple cis regulatory elements for maximal expression of the cauliflower mosaic virus 35S promoter in transgenic plants. Plant Cell. 1989 Jan;1(1):141–150. doi: 10.1105/tpc.1.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gallie D. R., Sleat D. E., Watts J. W., Turner P. C., Wilson T. M. A comparison of eukaryotic viral 5'-leader sequences as enhancers of mRNA expression in vivo. Nucleic Acids Res. 1987 Nov 11;15(21):8693–8711. doi: 10.1093/nar/15.21.8693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gielen J., De Beuckeleer M., Seurinck J., Deboeck F., De Greve H., Lemmers M., Van Montagu M., Schell J. The complete nucleotide sequence of the TL-DNA of the Agrobacterium tumefaciens plasmid pTiAch5. EMBO J. 1984 Apr;3(4):835–846. doi: 10.1002/j.1460-2075.1984.tb01894.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Heineke D., Sonnewald U., Büssis D., Günter G., Leidreiter K., Wilke I., Raschke K., Willmitzer L., Heldt H. W. Apoplastic expression of yeast-derived invertase in potato : effects on photosynthesis, leaf solute composition, water relations, and tuber composition. Plant Physiol. 1992 Sep;100(1):301–308. doi: 10.1104/pp.100.1.301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  10. Lahti R., Pitkäranta T., Valve E., Ilta I., Kukko-Kalske E., Heinonen J. Cloning and characterization of the gene encoding inorganic pyrophosphatase of Escherichia coli K-12. J Bacteriol. 1988 Dec;170(12):5901–5907. doi: 10.1128/jb.170.12.5901-5907.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Martin T., Frommer W. B., Salanoubat M., Willmitzer L. Expression of an Arabidopsis sucrose synthase gene indicates a role in metabolization of sucrose both during phloem loading and in sink organs. Plant J. 1993 Aug;4(2):367–377. doi: 10.1046/j.1365-313x.1993.04020367.x. [DOI] [PubMed] [Google Scholar]
  12. Riesmeier J. W., Hirner B., Frommer W. B. Potato sucrose transporter expression in minor veins indicates a role in phloem loading. Plant Cell. 1993 Nov;5(11):1591–1598. doi: 10.1105/tpc.5.11.1591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Riesmeier J. W., Willmitzer L., Frommer W. B. Isolation and characterization of a sucrose carrier cDNA from spinach by functional expression in yeast. EMBO J. 1992 Dec;11(13):4705–4713. doi: 10.1002/j.1460-2075.1992.tb05575.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Schmülling T., Schell J., Spena A. Promoters of the rolA, B, and C genes of Agrobacterium rhizogenesare differentially regulated in transgenic plants. Plant Cell. 1989 Jul;1(7):665–670. doi: 10.1105/tpc.1.7.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Slightom J. L., Durand-Tardif M., Jouanin L., Tepfer D. Nucleotide sequence analysis of TL-DNA of Agrobacterium rhizogenes agropine type plasmid. Identification of open reading frames. J Biol Chem. 1986 Jan 5;261(1):108–121. [PubMed] [Google Scholar]
  16. Vervliet G., Holsters M., Teuchy H., Van Montagu M., Schell J. Characterization of different plaque-forming and defective temperate phages in Agrobacterium. J Gen Virol. 1975 Jan;26(1):33–48. doi: 10.1099/0022-1317-26-1-33. [DOI] [PubMed] [Google Scholar]
  17. Yang N. S., Russell D. Maize sucrose synthase-1 promoter directs phloem cell-specific expression of Gus gene in transgenic tobacco plants. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4144–4148. doi: 10.1073/pnas.87.11.4144. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES