Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1995 Mar;7(3):295–307. doi: 10.1105/tpc.7.3.295

Functional dissection of an abscisic acid (ABA)-inducible gene reveals two independent ABA-responsive complexes each containing a G-box and a novel cis-acting element.

Q Shen 1, T H Ho 1
PMCID: PMC160783  PMID: 7734964

Abstract

To elucidate the mechanism by which abscisic acid (ABA) regulates gene expression, the promoter of the barley ABA-responsive HVA22 gene has been analyzed by both loss- and gain-of-function studies. Previous reports indicate that G-box sequences, which are present in genes responding to a variety of environmental and physiological cues, are involved in ABA response. However, our data suggest that G-box sequences are necessary but not sufficient for ABA response. Instead, an ABA response complex consisting of a G-box, namely, ABRE3 (GCCACGTACA), and a novel coupling element, CE1 (TGCCACCGG), is sufficient for high-level ABA induction, and replacement of either of these sequences abolishes ABA responsiveness. We suggest that the interaction between G-box sequences, such as ABRE3 in the HVA22 gene, and CE-type sequences determines the specificity in ABA-regulated gene expression. Our results also demonstrate that the ABA response complex is the minimal promoter unit governing high-level ABA induction; four copies of this 49-bp-long complex linked to a minimal promoter can confer more than 100-fold ABA-induced gene expression. In addition to ABA response complex 1, composed of ABRE3 and CE1, the HVA22 promoter contains another ABA response complex. The ABA responsiveness of this ABA response complex 2 relies on the interaction of G-box (ABRE2; CGCACGTGTC) with another yet unidentified coupling element. These two complexes contribute incrementally to the expression level of HVA22 in response to ABA.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allan A. C., Fricker M. D., Ward J. L., Beale M. H., Trewavas A. J. Two Transduction Pathways Mediate Rapid Effects of Abscisic Acid in Commelina Guard Cells. Plant Cell. 1994 Sep;6(9):1319–1328. doi: 10.1105/tpc.6.9.1319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson B. E., Ward J. M., Schroeder J. I. Evidence for an Extracellular Reception Site for Abscisic Acid in Commelina Guard Cells. Plant Physiol. 1994 Apr;104(4):1177–1183. doi: 10.1104/pp.104.4.1177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Armstrong G. A., Weisshaar B., Hahlbrock K. Homodimeric and heterodimeric leucine zipper proteins and nuclear factors from parsley recognize diverse promoter elements with ACGT cores. Plant Cell. 1992 May;4(5):525–537. doi: 10.1105/tpc.4.5.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berkowitz E. A., Evans M. I. Functional analysis of regulatory regions upstream and in the first intron of the estrogen-responsive chicken very low density apolipoprotein II gene. J Biol Chem. 1992 Apr 5;267(10):7134–7138. [PubMed] [Google Scholar]
  5. Block A., Dangl J. L., Hahlbrock K., Schulze-Lefert P. Functional borders, genetic fine structure, and distance requirements of cis elements mediating light responsiveness of the parsley chalcone synthase promoter. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5387–5391. doi: 10.1073/pnas.87.14.5387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bruce W. B., Quail P. H. cis-acting elements involved in photoregulation of an oat phytochrome promoter in rice. Plant Cell. 1990 Nov;2(11):1081–1089. doi: 10.1105/tpc.2.11.1081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Callis J., Fromm M., Walbot V. Introns increase gene expression in cultured maize cells. Genes Dev. 1987 Dec;1(10):1183–1200. doi: 10.1101/gad.1.10.1183. [DOI] [PubMed] [Google Scholar]
  8. Cohen A., Bray E. A. Nucleotide sequence of an ABA-induced tomato gene that is expressed in wilted vegetative organs and developing seeds. Plant Mol Biol. 1992 Jan;18(2):411–413. doi: 10.1007/BF00034969. [DOI] [PubMed] [Google Scholar]
  9. Comai L., Tanese N., Tjian R. The TATA-binding protein and associated factors are integral components of the RNA polymerase I transcription factor, SL1. Cell. 1992 Mar 6;68(5):965–976. doi: 10.1016/0092-8674(92)90039-f. [DOI] [PubMed] [Google Scholar]
  10. Donald R. G., Cashmore A. R. Mutation of either G box or I box sequences profoundly affects expression from the Arabidopsis rbcS-1A promoter. EMBO J. 1990 Jun;9(6):1717–1726. doi: 10.1002/j.1460-2075.1990.tb08295.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Donald R. G., Schindler U., Batschauer A., Cashmore A. R. The plant G box promoter sequence activates transcription in Saccharomyces cerevisiae and is bound in vitro by a yeast activity similar to GBF, the plant G box binding factor. EMBO J. 1990 Jun;9(6):1727–1735. doi: 10.1002/j.1460-2075.1990.tb08296.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Foster R., Izawa T., Chua N. H. Plant bZIP proteins gather at ACGT elements. FASEB J. 1994 Feb;8(2):192–200. doi: 10.1096/fasebj.8.2.8119490. [DOI] [PubMed] [Google Scholar]
  13. Giuliano G., Pichersky E., Malik V. S., Timko M. P., Scolnik P. A., Cashmore A. R. An evolutionarily conserved protein binding sequence upstream of a plant light-regulated gene. Proc Natl Acad Sci U S A. 1988 Oct;85(19):7089–7093. doi: 10.1073/pnas.85.19.7089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Guiltinan M. J., Marcotte W. R., Jr, Quatrano R. S. A plant leucine zipper protein that recognizes an abscisic acid response element. Science. 1990 Oct 12;250(4978):267–271. doi: 10.1126/science.2145628. [DOI] [PubMed] [Google Scholar]
  15. Izawa T., Foster R., Chua N. H. Plant bZIP protein DNA binding specificity. J Mol Biol. 1993 Apr 20;230(4):1131–1144. doi: 10.1006/jmbi.1993.1230. [DOI] [PubMed] [Google Scholar]
  16. Khursheed B., Rogers J. C. Barley alpha-amylase genes. Quantitative comparison of steady-state mRNA levels from individual members of the two different families expressed in aleurone cells. J Biol Chem. 1988 Dec 15;263(35):18953–18960. [PubMed] [Google Scholar]
  17. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  18. Lanahan M. B., Ho T. H., Rogers S. W., Rogers J. C. A gibberellin response complex in cereal alpha-amylase gene promoters. Plant Cell. 1992 Feb;4(2):203–211. doi: 10.1105/tpc.4.2.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Landschulz W. H., Johnson P. F., McKnight S. L. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science. 1988 Jun 24;240(4860):1759–1764. doi: 10.1126/science.3289117. [DOI] [PubMed] [Google Scholar]
  20. Litts J. C., Colwell G. W., Chakerian R. L., Quatrano R. S. Sequence analysis of a functional member of the Em gene family from wheat. DNA Seq. 1991;1(4):263–274. doi: 10.3109/10425179109020781. [DOI] [PubMed] [Google Scholar]
  21. Liu Z. B., Ulmasov T., Shi X., Hagen G., Guilfoyle T. J. Soybean GH3 promoter contains multiple auxin-inducible elements. Plant Cell. 1994 May;6(5):645–657. doi: 10.1105/tpc.6.5.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Loake G. J., Faktor O., Lamb C. J., Dixon R. A. Combination of H-box [CCTACC(N)7CT] and G-box (CACGTG) cis elements is necessary for feed-forward stimulation of a chalcone synthase promoter by the phenylpropanoid-pathway intermediate p-coumaric acid. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9230–9234. doi: 10.1073/pnas.89.19.9230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lång V., Palva E. T. The expression of a rab-related gene, rab18, is induced by abscisic acid during the cold acclimation process of Arabidopsis thaliana (L.) Heynh. Plant Mol Biol. 1992 Dec;20(5):951–962. doi: 10.1007/BF00027165. [DOI] [PubMed] [Google Scholar]
  24. Marcotte W. R., Jr, Russell S. H., Quatrano R. S. Abscisic acid-responsive sequences from the em gene of wheat. Plant Cell. 1989 Oct;1(10):969–976. doi: 10.1105/tpc.1.10.969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mason H. S., DeWald D. B., Mullet J. E. Identification of a methyl jasmonate-responsive domain in the soybean vspB promoter. Plant Cell. 1993 Mar;5(3):241–251. doi: 10.1105/tpc.5.3.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. McCarty D. R., Hattori T., Carson C. B., Vasil V., Lazar M., Vasil I. K. The Viviparous-1 developmental gene of maize encodes a novel transcriptional activator. Cell. 1991 Sep 6;66(5):895–905. doi: 10.1016/0092-8674(91)90436-3. [DOI] [PubMed] [Google Scholar]
  27. Meyer K., Leube M. P., Grill E. A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana. Science. 1994 Jun 3;264(5164):1452–1455. doi: 10.1126/science.8197457. [DOI] [PubMed] [Google Scholar]
  28. Mundy J., Chua N. H. Abscisic acid and water-stress induce the expression of a novel rice gene. EMBO J. 1988 Aug;7(8):2279–2286. doi: 10.1002/j.1460-2075.1988.tb03070.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mundy J., Yamaguchi-Shinozaki K., Chua N. H. Nuclear proteins bind conserved elements in the abscisic acid-responsive promoter of a rice rab gene. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1406–1410. doi: 10.1073/pnas.87.4.1406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Oeda K., Salinas J., Chua N. H. A tobacco bZip transcription activator (TAF-1) binds to a G-box-like motif conserved in plant genes. EMBO J. 1991 Jul;10(7):1793–1802. doi: 10.1002/j.1460-2075.1991.tb07704.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Qin X. F., Holuigue L., Horvath D. M., Chua N. H. Immediate early transcription activation by salicylic acid via the cauliflower mosaic virus as-1 element. Plant Cell. 1994 Jun;6(6):863–874. doi: 10.1105/tpc.6.6.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rogers J. C., Rogers S. W. Definition and functional implications of gibberellin and abscisic acid cis-acting hormone response complexes. Plant Cell. 1992 Nov;4(11):1443–1451. doi: 10.1105/tpc.4.11.1443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sap J., de Magistris L., Stunnenberg H., Vennström B. A major thyroid hormone response element in the third intron of the rat growth hormone gene. EMBO J. 1990 Mar;9(3):887–896. doi: 10.1002/j.1460-2075.1990.tb08186.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Schulze-Lefert P., Becker-André M., Schulz W., Hahlbrock K., Dangl J. L. Functional architecture of the light-responsive chalcone synthase promoter from parsley. Plant Cell. 1989 Jul;1(7):707–714. doi: 10.1105/tpc.1.7.707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Schwartz A., Wu W. H., Tucker E. B., Assmann S. M. Inhibition of inward K+ channels and stomatal response by abscisic acid: an intracellular locus of phytohormone action. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):4019–4023. doi: 10.1073/pnas.91.9.4019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Shen Q., Uknes S. J., Ho T. H. Hormone response complex in a novel abscisic acid and cycloheximide-inducible barley gene. J Biol Chem. 1993 Nov 5;268(31):23652–23660. [PubMed] [Google Scholar]
  37. Skriver K., Olsen F. L., Rogers J. C., Mundy J. cis-acting DNA elements responsive to gibberellin and its antagonist abscisic acid. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7266–7270. doi: 10.1073/pnas.88.16.7266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Straub P. F., Shen Q., Ho T. D. Structure and promoter analysis of an ABA- and stress-regulated barley gene, HVA1. Plant Mol Biol. 1994 Oct;26(2):617–630. doi: 10.1007/BF00013748. [DOI] [PubMed] [Google Scholar]
  39. Vilardell J., Goday A., Freire M. A., Torrent M., Martínez M. C., Torné J. M., Pagès M. Gene sequence, developmental expression, and protein phosphorylation of RAB-17 in maize. Plant Mol Biol. 1990 Mar;14(3):423–432. doi: 10.1007/BF00028778. [DOI] [PubMed] [Google Scholar]
  40. Williams M. E., Foster R., Chua N. H. Sequences flanking the hexameric G-box core CACGTG affect the specificity of protein binding. Plant Cell. 1992 Apr;4(4):485–496. doi: 10.1105/tpc.4.4.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Yamaguchi-Shinozaki K., Mundy J., Chua N. H. Four tightly linked rab genes are differentially expressed in rice. Plant Mol Biol. 1990 Jan;14(1):29–39. doi: 10.1007/BF00015652. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES