Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1995 Mar;7(3):359–371. doi: 10.1105/tpc.7.3.359

Palmitoyl-acyl carrier protein (ACP) thioesterase and the evolutionary origin of plant acyl-ACP thioesterases.

A Jones 1, H M Davies 1, T A Voelker 1
PMCID: PMC160788  PMID: 7734968

Abstract

Acyl-acyl carrier protein (ACP) thioesterases play an essential role in chain termination during de novo fatty acid synthesis and in the channeling of carbon flux between the two lipid biosynthesis pathways in plants. We have discovered that there are two distinct but related thioesterase gene classes in higher plants, termed FatA and FatB, whose evolutionary divergence appears to be ancient. FatA encodes the already described 18:1-ACP thioesterase. In contrast, FatB representatives encode thioesterases preferring acyl-ACPs having saturated acyl groups. We unexpectedly obtained a 16:0-ACP thioesterase cDNA from Cuphea hookeriana seed, which accumulate predominantly 8:0 and 10:0. The 16:0 thioesterase transcripts were found in non-seed tissues, and expression in transgenic Brassica napus led to the production of a 16:0-rich oil. We present evidence that this type of FatB gene is ancient and ubiquitous in plants and that specialized plant medium-chain thioesterases have evolved independently from such enzymes several times during angiosperm evolution. Also, the ubiquitous 18:1-ACP thioesterase appears to be a derivative of a 16:0 thioesterase.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Batzer M. A., Carlton J. E., Deininger P. L. Enhanced evolutionary PCR using oligonucleotides with inosine at the 3'-terminus. Nucleic Acids Res. 1991 Sep 25;19(18):5081–5081. doi: 10.1093/nar/19.18.5081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cho H., Cronan J. E., Jr "Protease I" of Escherichia coli functions as a thioesterase in vivo. J Bacteriol. 1994 Mar;176(6):1793–1795. doi: 10.1128/jb.176.6.1793-1795.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Davies H. M., Anderson L., Fan C., Hawkins D. J. Developmental induction, purification, and further characterization of 12:0-ACP thioesterase from immature cotyledons of Umbellularia californica. Arch Biochem Biophys. 1991 Oct;290(1):37–45. doi: 10.1016/0003-9861(91)90588-a. [DOI] [PubMed] [Google Scholar]
  4. Dörmann P., Kridl J. C., Ohlrogge J. B. Cloning and expression in Escherichia coli of a cDNA coding for the oleoyl-acyl carrier protein thioesterase from coriander (Coriandrum sativum L.). Biochim Biophys Acta. 1994 Apr 14;1212(1):134–136. doi: 10.1016/0005-2760(94)90199-6. [DOI] [PubMed] [Google Scholar]
  5. Dörmann P., Voelker T. A., Ohlrogge J. B. Cloning and expression in Escherichia coli of a novel thioesterase from Arabidopsis thaliana specific for long-chain acyl-acyl carrier proteins. Arch Biochem Biophys. 1995 Jan 10;316(1):612–618. doi: 10.1006/abbi.1995.1081. [DOI] [PubMed] [Google Scholar]
  6. Fitch W. M. Distinguishing homologous from analogous proteins. Syst Zool. 1970 Jun;19(2):99–113. [PubMed] [Google Scholar]
  7. Gould S. J., Subramani S., Scheffler I. E. Use of the DNA polymerase chain reaction for homology probing: isolation of partial cDNA or genomic clones encoding the iron-sulfur protein of succinate dehydrogenase from several species. Proc Natl Acad Sci U S A. 1989 Mar;86(6):1934–1938. doi: 10.1073/pnas.86.6.1934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gray M. W. The evolutionary origins of organelles. Trends Genet. 1989 Sep;5(9):294–299. doi: 10.1016/0168-9525(89)90111-x. [DOI] [PubMed] [Google Scholar]
  9. Hattori M., Sakaki Y. Dideoxy sequencing method using denatured plasmid templates. Anal Biochem. 1986 Feb 1;152(2):232–238. doi: 10.1016/0003-2697(86)90403-3. [DOI] [PubMed] [Google Scholar]
  10. Klein K., Steinberg R., Fiethen B., Overath P. Fatty acid degradation in Escherichia coli. An inducible system for the uptake of fatty acids and further characterization of old mutants. Eur J Biochem. 1971 Apr;19(3):442–450. doi: 10.1111/j.1432-1033.1971.tb01334.x. [DOI] [PubMed] [Google Scholar]
  11. Knutzon D. S., Bleibaum J. L., Nelsen J., Kridl J. C., Thompson G. A. Isolation and characterization of two safflower oleoyl-acyl carrier protein thioesterase cDNA clones. Plant Physiol. 1992 Dec;100(4):1751–1758. doi: 10.1104/pp.100.4.1751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lawson D. M., Derewenda U., Serre L., Ferri S., Szittner R., Wei Y., Meighen E. A., Derewenda Z. S. Structure of a myristoyl-ACP-specific thioesterase from Vibrio harveyi. Biochemistry. 1994 Aug 16;33(32):9382–9388. doi: 10.1021/bi00198a003. [DOI] [PubMed] [Google Scholar]
  13. Lütcke H. A., Chow K. C., Mickel F. S., Moss K. A., Kern H. F., Scheele G. A. Selection of AUG initiation codons differs in plants and animals. EMBO J. 1987 Jan;6(1):43–48. doi: 10.1002/j.1460-2075.1987.tb04716.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Magnuson K., Jackowski S., Rock C. O., Cronan J. E., Jr Regulation of fatty acid biosynthesis in Escherichia coli. Microbiol Rev. 1993 Sep;57(3):522–542. doi: 10.1128/mr.57.3.522-542.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Martin W., Lydiate D., Brinkmann H., Forkmann G., Saedler H., Cerff R. Molecular phylogenies in angiosperm evolution. Mol Biol Evol. 1993 Jan;10(1):140–162. doi: 10.1093/oxfordjournals.molbev.a039989. [DOI] [PubMed] [Google Scholar]
  16. Pollard M. R., Anderson L., Fan C., Hawkins D. J., Davies H. M. A specific acyl-ACP thioesterase implicated in medium-chain fatty acid production in immature cotyledons of Umbellularia californica. Arch Biochem Biophys. 1991 Feb 1;284(2):306–312. doi: 10.1016/0003-9861(91)90300-8. [DOI] [PubMed] [Google Scholar]
  17. Sanderson M. J., Donoghue M. J. Shifts in diversification rate with the origin of angiosperms. Science. 1994 Jun 10;264(5165):1590–1593. doi: 10.1126/science.264.5165.1590. [DOI] [PubMed] [Google Scholar]
  18. Siebenlist U., Wohlgemuth S., Finger K., Schweizer E. Isolation of a novel type-I fatty-acid synthetase from Euglena gracilis. Specific derepression in streptomycin-bleached cells. Eur J Biochem. 1991 Dec 5;202(2):515–519. doi: 10.1111/j.1432-1033.1991.tb16403.x. [DOI] [PubMed] [Google Scholar]
  19. Voelker T. A., Worrell A. C., Anderson L., Bleibaum J., Fan C., Hawkins D. J., Radke S. E., Davies H. M. Fatty acid biosynthesis redirected to medium chains in transgenic oilseed plants. Science. 1992 Jul 3;257(5066):72–74. doi: 10.1126/science.1621095. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES