Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1995 Mar;7(3):373–384. doi: 10.1105/tpc.7.3.373

Pollen specificity elements reside in 30 bp of the proximal promoters of two pollen-expressed genes.

Y Eyal 1, C Curie 1, S McCormick 1
PMCID: PMC160789  PMID: 7734969

Abstract

Functional analyses previously identified minimal promoter regions required for maintaining high-level expression of the late anther tomato LAT52 and LAT59 genes in tomato pollen. Here, we now define elements that direct pollen specificity. We used a transient assay system consisting of two cell types that differentially express the LAT genes and both "loss-of-function" and "gain-of-function" approaches. Linker substitution mutants analyzed in the transient assay and in transgenic plants identified 30-bp proximal promoter regions of LAT52 and LAT59 that are essential for their expression in pollen and that confer pollen specificity when fused to the heterologous cauliflower mosaic virus 35S core promoter. In vivo competition experiments demonstrated that a common trans-acting factor interacts with the pollen specificity region of both LAT gene promoters and suggested that a common mechanism regulates their coordinate expression. Adjacent upstream elements, the 52/56 box in LAT52 and the 56/59 box in LAT59, are involved in modulating the level of expression in pollen. The 52/56 box may be a target for the binding of a member of the GT-1 transcription factor family.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albani D., Sardana R., Robert L. S., Altosaar I., Arnison P. G., Fabijanski S. F. A Brassica napus gene family which shows sequence similarity to ascorbate oxidase is expressed in developing pollen. Molecular characterization and analysis of promoter activity in transgenic tobacco plants. Plant J. 1992 May;2(3):331–342. [PubMed] [Google Scholar]
  2. Benfey P. N., Chua N. H. The Cauliflower Mosaic Virus 35S Promoter: Combinatorial Regulation of Transcription in Plants. Science. 1990 Nov 16;250(4983):959–966. doi: 10.1126/science.250.4983.959. [DOI] [PubMed] [Google Scholar]
  3. Benfey P. N., Ren L., Chua N. H. Tissue-specific expression from CaMV 35S enhancer subdomains in early stages of plant development. EMBO J. 1990 Jun;9(6):1677–1684. doi: 10.1002/j.1460-2075.1990.tb08291.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bevan M. Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res. 1984 Nov 26;12(22):8711–8721. doi: 10.1093/nar/12.22.8711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dilworth D. D., McCarrey J. R. Single-step elimination of contaminating DNA prior to reverse transcriptase PCR. PCR Methods Appl. 1992 May;1(4):279–282. doi: 10.1101/gr.1.4.279. [DOI] [PubMed] [Google Scholar]
  6. Gilmartin P. M., Memelink J., Hiratsuka K., Kay S. A., Chua N. H. Characterization of a gene encoding a DNA binding protein with specificity for a light-responsive element. Plant Cell. 1992 Jul;4(7):839–849. doi: 10.1105/tpc.4.7.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Grierson C., Du J. S., de Torres Zabala M., Beggs K., Smith C., Holdsworth M., Bevan M. Separate cis sequences and trans factors direct metabolic and developmental regulation of a potato tuber storage protein gene. Plant J. 1994 Jun;5(6):815–826. doi: 10.1046/j.1365-313x.1994.5060815.x. [DOI] [PubMed] [Google Scholar]
  8. Guerrero F. D., Crossland L., Smutzer G. S., Hamilton D. A., Mascarenhas J. P. Promoter sequences from a maize pollen-specific gene direct tissue-specific transcription in tobacco. Mol Gen Genet. 1990 Nov;224(2):161–168. doi: 10.1007/BF00271548. [DOI] [PubMed] [Google Scholar]
  9. Howard E. A., Zupan J. R., Citovsky V., Zambryski P. C. The VirD2 protein of A. tumefaciens contains a C-terminal bipartite nuclear localization signal: implications for nuclear uptake of DNA in plant cells. Cell. 1992 Jan 10;68(1):109–118. doi: 10.1016/0092-8674(92)90210-4. [DOI] [PubMed] [Google Scholar]
  10. Jefferson R. A., Kavanagh T. A., Bevan M. W. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987 Dec 20;6(13):3901–3907. doi: 10.1002/j.1460-2075.1987.tb02730.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  12. Kyozuka J., Olive M., Peacock W. J., Dennis E. S., Shimamoto K. Promoter elements required for developmental expression of the maize Adh1 gene in transgenic rice. Plant Cell. 1994 Jun;6(6):799–810. doi: 10.1105/tpc.6.6.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Leah R., Skriver K., Knudsen S., Ruud-Hansen J., Raikhel N. V., Mundy J. Identification of an enhancer/silencer sequence directing the aleurone-specific expression of a barley chitinase gene. Plant J. 1994 Oct;6(4):579–589. doi: 10.1046/j.1365-313x.1994.6040579.x. [DOI] [PubMed] [Google Scholar]
  14. Logemann J., Schell J., Willmitzer L. Improved method for the isolation of RNA from plant tissues. Anal Biochem. 1987 May 15;163(1):16–20. doi: 10.1016/0003-2697(87)90086-8. [DOI] [PubMed] [Google Scholar]
  15. McCormick S. Molecular analysis of male gametogenesis in plants. Trends Genet. 1991 Sep;7(9):298–303. doi: 10.1016/0168-9525(91)90312-E. [DOI] [PubMed] [Google Scholar]
  16. Muschietti J., Dircks L., Vancanneyt G., McCormick S. LAT52 protein is essential for tomato pollen development: pollen expressing antisense LAT52 RNA hydrates and germinates abnormally and cannot achieve fertilization. Plant J. 1994 Sep;6(3):321–338. doi: 10.1046/j.1365-313x.1994.06030321.x. [DOI] [PubMed] [Google Scholar]
  17. Neuhaus G., Neuhaus-Url G., Katagiri F., Seipel K., Chua N. H. Tissue-Specific Expression of as-1 in Transgenic Tobacco. Plant Cell. 1994 Jun;6(6):827–834. doi: 10.1105/tpc.6.6.827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ow D. W., DE Wet J. R., Helinski D. R., Howell S. H., Wood K. V., Deluca M. Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science. 1986 Nov 14;234(4778):856–859. doi: 10.1126/science.234.4778.856. [DOI] [PubMed] [Google Scholar]
  19. Ow D. W., Jacobs J. D., Howell S. H. Functional regions of the cauliflower mosaic virus 35S RNA promoter determined by use of the firefly luciferase gene as a reporter of promoter activity. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4870–4874. doi: 10.1073/pnas.84.14.4870. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Perisic O., Lam E. A tobacco DNA binding protein that interacts with a light-responsive box II element. Plant Cell. 1992 Jul;4(7):831–838. doi: 10.1105/tpc.4.7.831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Twell D., Klein T. M., Fromm M. E., McCormick S. Transient expression of chimeric genes delivered into pollen by microprojectile bombardment. Plant Physiol. 1989 Dec;91(4):1270–1274. doi: 10.1104/pp.91.4.1270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Twell D., Wing R., Yamaguchi J., McCormick S. Isolation and expression of an anther-specific gene from tomato. Mol Gen Genet. 1989 Jun;217(2-3):240–245. doi: 10.1007/BF02464887. [DOI] [PubMed] [Google Scholar]
  23. Twell D., Yamaguchi J., McCormick S. Pollen-specific gene expression in transgenic plants: coordinate regulation of two different tomato gene promoters during microsporogenesis. Development. 1990 Jul;109(3):705–713. doi: 10.1242/dev.109.3.705. [DOI] [PubMed] [Google Scholar]
  24. Twell D., Yamaguchi J., Wing R. A., Ushiba J., McCormick S. Promoter analysis of genes that are coordinately expressed during pollen development reveals pollen-specific enhancer sequences and shared regulatory elements. Genes Dev. 1991 Mar;5(3):496–507. doi: 10.1101/gad.5.3.496. [DOI] [PubMed] [Google Scholar]
  25. Wang M. M., Reed R. R. Molecular cloning of the olfactory neuronal transcription factor Olf-1 by genetic selection in yeast. Nature. 1993 Jul 8;364(6433):121–126. doi: 10.1038/364121a0. [DOI] [PubMed] [Google Scholar]
  26. Wing R. A., Yamaguchi J., Larabell S. K., Ursin V. M., McCormick S. Molecular and genetic characterization of two pollen-expressed genes that have sequence similarity to pectate lyases of the plant pathogen Erwinia. Plant Mol Biol. 1990 Jan;14(1):17–28. doi: 10.1007/BF00015651. [DOI] [PubMed] [Google Scholar]
  27. Yunes J. A., Cord Neto G., da Silva M. J., Leite A., Ottoboni L. M., Arruda P. The transcriptional activator Opaque2 recognizes two different target sequences in the 22-kD-like alpha-prolamin genes. Plant Cell. 1994 Feb;6(2):237–249. doi: 10.1105/tpc.6.2.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. de Pater S., Pham K., Chua N. H., Memelink J., Kijne J. A 22-bp fragment of the pea lectin promoter containing essential TGAC-like motifs confers seed-specific gene expression. Plant Cell. 1993 Aug;5(8):877–886. doi: 10.1105/tpc.5.8.877. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES