Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1995 Apr;7(4):391–406. doi: 10.1105/tpc.7.4.391

The tobacco homolog of mammalian calreticulin is present in protein complexes in vivo.

J Denecke 1, L E Carlsson 1, S Vidal 1, A S Höglund 1, B Ek 1, M J van Zeijl 1, K M Sinjorgo 1, E T Palva 1
PMCID: PMC160791  PMID: 7773014

Abstract

The analysis of protein sorting signals responsible for the retention of reticuloplasmins (RPLs), a group of soluble proteins that reside in the lumen of the endoplasmic reticulum (ER), has revealed a structural similarity between mammalian and plant ER retention signals. We present evidence that the corresponding epitope is conserved in a vast family of soluble ER resident proteins. Microsequences of RPL60 and RPL90, two abundant members of this family, show high sequence similarity with mammalian calreticulin and endoplasmin. RPL60/calreticulin cofractionates and costains with the lumenal binding protein (BiP). Both proteins were detected in the nuclear envelope and the ER, and in mitotic cells in association with the spindle apparatus and the phragmoplast. Immunoprecipitation of proteins from in vivo-labeled cells demonstrated that RPL60/calreticulin is associated with other polypeptides in a stress- and ATP-dependent fashion. RPL60/calreticulin transcript levels increased rapidly in abundance during the proliferation of the secretory apparatus and the onset of hydrolase secretion in gibberellic acid-treated barley aleurone cells. This induction profile is identical to that of the well-characterized ER chaperones BiP and endoplasmin. However, expression patterns in response to different stress conditions as well as tissue-specific expression patterns indicate that these genes are differentially regulated and may not act in concert.

Full Text

The Full Text of this article is available as a PDF (4.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andres D. A., Dickerson I. M., Dixon J. E. Variants of the carboxyl-terminal KDEL sequence direct intracellular retention. J Biol Chem. 1990 Apr 15;265(11):5952–5955. [PubMed] [Google Scholar]
  2. Botterman J., Gosselé V., Thoen C., Lauwereys M. Characterization of phosphinothricin acetyltransferase and C-terminal enzymatically active fusion proteins. Gene. 1991 Jun 15;102(1):33–37. doi: 10.1016/0378-1119(91)90534-i. [DOI] [PubMed] [Google Scholar]
  3. Burns K., Michalak M. Interactions of calreticulin with proteins of the endoplasmic and sarcoplasmic reticulum membranes. FEBS Lett. 1993 Mar 1;318(2):181–185. doi: 10.1016/0014-5793(93)80017-o. [DOI] [PubMed] [Google Scholar]
  4. Castresana C., de Carvalho F., Gheysen G., Habets M., Inzé D., Van Montagu M. Tissue-specific and pathogen-induced regulation of a Nicotiana plumbaginifolia beta-1,3-glucanase gene. Plant Cell. 1990 Dec;2(12):1131–1143. doi: 10.1105/tpc.2.12.1131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chen F., Hayes P. M., Mulrooney D. M., Pan A. Identification and characterization of cDNA clones encoding plant calreticulin in barley. Plant Cell. 1994 Jun;6(6):835–843. doi: 10.1105/tpc.6.6.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cox J. S., Shamu C. E., Walter P. Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell. 1993 Jun 18;73(6):1197–1206. doi: 10.1016/0092-8674(93)90648-a. [DOI] [PubMed] [Google Scholar]
  7. D'Halluin K., De Block M., Denecke J., Janssens J., Leemans J., Reynaerts A., Botterman J. The bar gene as selectable and screenable marker in plant engineering. Methods Enzymol. 1992;216:415–426. doi: 10.1016/0076-6879(92)16038-l. [DOI] [PubMed] [Google Scholar]
  8. Dean C., Elzen P., Tamaki S., Dunsmuir P., Bedbrook J. Differential expression of the eight genes of the petunia ribulose bisphosphate carboxylase small subunit multi-gene family. EMBO J. 1985 Dec 1;4(12):3055–3061. doi: 10.1002/j.1460-2075.1985.tb04045.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dedhar S., Rennie P. S., Shago M., Hagesteijn C. Y., Yang H., Filmus J., Hawley R. G., Bruchovsky N., Cheng H., Matusik R. J. Inhibition of nuclear hormone receptor activity by calreticulin. Nature. 1994 Feb 3;367(6462):480–483. doi: 10.1038/367480a0. [DOI] [PubMed] [Google Scholar]
  10. Denecke J., Botterman J., Deblaere R. Protein secretion in plant cells can occur via a default pathway. Plant Cell. 1990 Jan;2(1):51–59. doi: 10.1105/tpc.2.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Denecke J., De Rycke R., Botterman J. Plant and mammalian sorting signals for protein retention in the endoplasmic reticulum contain a conserved epitope. EMBO J. 1992 Jun;11(6):2345–2355. doi: 10.1002/j.1460-2075.1992.tb05294.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Denecke J., Goldman M. H., Demolder J., Seurinck J., Botterman J. The tobacco luminal binding protein is encoded by a multigene family. Plant Cell. 1991 Sep;3(9):1025–1035. doi: 10.1105/tpc.3.9.1025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Evins W. H., Varner J. E. Hormone-controlled synthesis of endoplasmic reticulum in barley aleurone cells. Proc Natl Acad Sci U S A. 1971 Jul;68(7):1631–1633. doi: 10.1073/pnas.68.7.1631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fontes E. B., Shank B. B., Wrobel R. L., Moose S. P., OBrian G. R., Wurtzel E. T., Boston R. S. Characterization of an immunoglobulin binding protein homolog in the maize floury-2 endosperm mutant. Plant Cell. 1991 May;3(5):483–496. doi: 10.1105/tpc.3.5.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Haugejorden S. M., Srinivasan M., Green M. Analysis of the retention signals of two resident luminal endoplasmic reticulum proteins by in vitro mutagenesis. J Biol Chem. 1991 Apr 5;266(10):6015–6018. [PubMed] [Google Scholar]
  16. Huang J. K., Swegle M., Dandekar A. M., Muthukrishnan S. Expression and regulation of alpha-amylase gene family in barley aleurones. J Mol Appl Genet. 1984;2(6):579–588. [PubMed] [Google Scholar]
  17. Huang L., Franklin A. E., Hoffman N. E. Primary structure and characterization of an Arabidopsis thaliana calnexin-like protein. J Biol Chem. 1993 Mar 25;268(9):6560–6566. [PubMed] [Google Scholar]
  18. Jackson M. R., Cohen-Doyle M. F., Peterson P. A., Williams D. B. Regulation of MHC class I transport by the molecular chaperone, calnexin (p88, IP90). Science. 1994 Jan 21;263(5145):384–387. doi: 10.1126/science.8278813. [DOI] [PubMed] [Google Scholar]
  19. Jones R. L., Bush D. S. Gibberellic Acid Regulates the Level of a BiP Cognate in the Endoplasmic Reticulum of Barley Aleurone Cells. Plant Physiol. 1991 Sep;97(1):456–459. doi: 10.1104/pp.97.1.456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Koch G. L. Reticuloplasmins: a novel group of proteins in the endoplasmic reticulum. J Cell Sci. 1987 May;87(Pt 4):491–492. doi: 10.1242/jcs.87.4.491. [DOI] [PubMed] [Google Scholar]
  21. Koltunow A. M., Truettner J., Cox K. H., Wallroth M., Goldberg R. B. Different Temporal and Spatial Gene Expression Patterns Occur during Anther Development. Plant Cell. 1990 Dec;2(12):1201–1224. doi: 10.1105/tpc.2.12.1201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kozutsumi Y., Segal M., Normington K., Gething M. J., Sambrook J. The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature. 1988 Mar 31;332(6163):462–464. doi: 10.1038/332462a0. [DOI] [PubMed] [Google Scholar]
  23. Macer D. R., Koch G. L. Identification of a set of calcium-binding proteins in reticuloplasm, the luminal content of the endoplasmic reticulum. J Cell Sci. 1988 Sep;91(Pt 1):61–70. doi: 10.1242/jcs.91.1.61. [DOI] [PubMed] [Google Scholar]
  24. Margolese L., Waneck G. L., Suzuki C. K., Degen E., Flavell R. A., Williams D. B. Identification of the region on the class I histocompatibility molecule that interacts with the molecular chaperone, p88 (calnexin, IP90). J Biol Chem. 1993 Aug 25;268(24):17959–17966. [PubMed] [Google Scholar]
  25. Mazzarella R. A., Srinivasan M., Haugejorden S. M., Green M. ERp72, an abundant luminal endoplasmic reticulum protein, contains three copies of the active site sequences of protein disulfide isomerase. J Biol Chem. 1990 Jan 15;265(2):1094–1101. [PubMed] [Google Scholar]
  26. Michalak M., Milner R. E., Burns K., Opas M. Calreticulin. Biochem J. 1992 Aug 1;285(Pt 3):681–692. doi: 10.1042/bj2850681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mori K., Ma W., Gething M. J., Sambrook J. A transmembrane protein with a cdc2+/CDC28-related kinase activity is required for signaling from the ER to the nucleus. Cell. 1993 Aug 27;74(4):743–756. doi: 10.1016/0092-8674(93)90521-q. [DOI] [PubMed] [Google Scholar]
  28. Ou W. J., Cameron P. H., Thomas D. Y., Bergeron J. J. Association of folding intermediates of glycoproteins with calnexin during protein maturation. Nature. 1993 Aug 26;364(6440):771–776. doi: 10.1038/364771a0. [DOI] [PubMed] [Google Scholar]
  29. Rajagopalan S., Xu Y., Brenner M. B. Retention of unassembled components of integral membrane proteins by calnexin. Science. 1994 Jan 21;263(5145):387–390. doi: 10.1126/science.8278814. [DOI] [PubMed] [Google Scholar]
  30. Rogers J. C. Two barley alpha-amylase gene families are regulated differently in aleurone cells. J Biol Chem. 1985 Mar 25;260(6):3731–3738. [PubMed] [Google Scholar]
  31. Shorrosh B. S., Dixon R. A. Molecular cloning of a putative plant endomembrane protein resembling vertebrate protein disulfide-isomerase and a phosphatidylinositol-specific phospholipase C. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10941–10945. doi: 10.1073/pnas.88.23.10941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Walther-Larsen H., Brandt J., Collinge D. B., Thordal-Christensen H. A pathogen-induced gene of barley encodes a HSP90 homologue showing striking similarity to vertebrate forms resident in the endoplasmic reticulum. Plant Mol Biol. 1993 Mar;21(6):1097–1108. doi: 10.1007/BF00023606. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES