Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1995 Apr;7(4):447–461. doi: 10.1105/tpc.7.4.447

Arabidopsis phosphoribosylanthranilate isomerase: molecular genetic analysis of triplicate tryptophan pathway genes.

J Li 1, J Zhao 1, A B Rose 1, R Schmidt 1, R L Last 1
PMCID: PMC160795  PMID: 7773017

Abstract

Phosphoribosylanthranilate isomerase (PAI) catalyzes the third step of the tryptophan biosynthetic pathway. Arabidopsis PAI cDNAs were cloned from a cDNA expression library by complementation of an Escherichia coli trpC- PAI deficiency mutation. Genomic DNA blot hybridization analysis detected three nonallelic genes encoding PAI in the Arabidopsis genome. DNA sequence analysis of cDNA and genomic clones indicated that the PAI1 and PAI2. All three PAI polypeptides possess an N-terminal putative plastid target sequence, suggesting that these enzymes all function in plastids. The PAI1 gene is flanked by nearly identical direct repeats of approximately 350 nucleotides. Our results indicate that, in contrast to most microorganisms, the Arabidopsis PAI protein is not fused with indole-3-glycerolphosphate synthase, which catalyzes the next step in the pathway. Yeast artificial chromosome hybridization studies indicated that the PAI2 gene is tightly linked to the anthranilate synthase alpha subunit 1 (ASA1) gene on chromosome 5. PAI1 was mapped to the top of chromosome 1 using recombinant inbred lines, and PAI3 is loosely linked to PAI1. cDNA restriction mapping and sequencing and RNA gel blot hybridization analysis indicated that all three genes are transcribed in wild-type plants. The expression of antisense PAI1 RNA significantly reduced the immunologically observable PAI protein and enzyme activity in transgenic plants. The plants expressing antisense RNA also showed two phenotypes consistent with a block early in the pathway: blue fluorescence under UV light and resistance to the anthranilate analog 6-methylanthranilate. The extreme nucleotide conservation between the unlinked PAI1 and PAI2 loci suggests that this gene family is actively evolving.

Full Text

The Full Text of this article is available as a PDF (3.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams R. R., Royer T. Complete genomic sequence encoding trpC from Aspergillus niger var. awamori. Nucleic Acids Res. 1990 Aug 25;18(16):4931–4931. doi: 10.1093/nar/18.16.4931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berlyn M. B., Last R. L., Fink G. R. A gene encoding the tryptophan synthase beta subunit of Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4604–4608. doi: 10.1073/pnas.86.12.4604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Choi H. T., Revuelta J. L., Sadhu C., Jayaram M. Structural organization of the TRP1 gene of Phycomyces blakesleeanus: implications for evolutionary gene fusion in fungi. Gene. 1988 Nov 15;71(1):85–95. doi: 10.1016/0378-1119(88)90080-7. [DOI] [PubMed] [Google Scholar]
  4. Christie G. E., Platt T. Gene structure in the tryptophan operon of Escherichia coli. Nucleotide sequence of trpC and the flanking intercistronic regions. J Mol Biol. 1980 Oct 5;142(4):519–530. doi: 10.1016/0022-2836(80)90261-2. [DOI] [PubMed] [Google Scholar]
  5. Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Coulson A., Waterston R., Kiff J., Sulston J., Kohara Y. Genome linking with yeast artificial chromosomes. Nature. 1988 Sep 8;335(6186):184–186. doi: 10.1038/335184a0. [DOI] [PubMed] [Google Scholar]
  7. DOY C. H., RIVERA A., Jr, SRINIVASAN P. R. Evidence for the enzymatic synthesis of N-(5'-phosphoribosyl) anthranilic acid, a new intermediate in tryptophan biosynthesis. Biochem Biophys Res Commun. 1961 Jan 25;4:83–88. doi: 10.1016/0006-291x(61)90261-3. [DOI] [PubMed] [Google Scholar]
  8. DeRocher E. J., Quigley F., Mache R., Bohnert H. J. The six genes of the Rubisco small subunit multigene family from Mesembryanthemum crystallinum, a facultative CAM plant. Mol Gen Genet. 1993 Jun;239(3):450–462. doi: 10.1007/BF00276944. [DOI] [PubMed] [Google Scholar]
  9. Elledge S. J., Mulligan J. T., Ramer S. W., Spottswood M., Davis R. W. Lambda YES: a multifunctional cDNA expression vector for the isolation of genes by complementation of yeast and Escherichia coli mutations. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1731–1735. doi: 10.1073/pnas.88.5.1731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Facchini P. J., Chappell J. Gene family for an elicitor-induced sesquiterpene cyclase in tobacco. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):11088–11092. doi: 10.1073/pnas.89.22.11088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  12. Grill E., Somerville C. Construction and characterization of a yeast artificial chromosome library of Arabidopsis which is suitable for chromosome walking. Mol Gen Genet. 1991 May;226(3):484–490. doi: 10.1007/BF00260662. [DOI] [PubMed] [Google Scholar]
  13. Haughn G. W., Davin L., Giblin M., Underhill E. W. Biochemical Genetics of Plant Secondary Metabolites in Arabidopsis thaliana: The Glucosinolates. Plant Physiol. 1991 Sep;97(1):217–226. doi: 10.1104/pp.97.1.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Henikoff S., Tatchell K., Hall B. D., Nasmyth K. A. Isolation of a gene from Drosophila by complementation in yeast. Nature. 1981 Jan 1;289(5793):33–37. doi: 10.1038/289033a0. [DOI] [PubMed] [Google Scholar]
  15. Higgins D. G., Bleasby A. J., Fuchs R. CLUSTAL V: improved software for multiple sequence alignment. Comput Appl Biosci. 1992 Apr;8(2):189–191. doi: 10.1093/bioinformatics/8.2.189. [DOI] [PubMed] [Google Scholar]
  16. Horowitz H., Van Arsdell J., Platt T. Nucleotide sequence of the trpD and trpC genes of Salmonella typhimurium. J Mol Biol. 1983 Oct 5;169(4):775–797. doi: 10.1016/s0022-2836(83)80136-3. [DOI] [PubMed] [Google Scholar]
  17. Hütter R., Niederberger P., DeMoss J. A. Tryptophan biosynthetic genes in eukaryotic microorganisms. Annu Rev Microbiol. 1986;40:55–77. doi: 10.1146/annurev.mi.40.100186.000415. [DOI] [PubMed] [Google Scholar]
  18. Jarvis P., Lister C., Szabo V., Dean C. Integration of CAPS markers into the RFLP map generated using recombinant inbred lines of Arabidopsis thaliana. Plant Mol Biol. 1994 Feb;24(4):685–687. doi: 10.1007/BF00023565. [DOI] [PubMed] [Google Scholar]
  19. Keith B., Dong X. N., Ausubel F. M., Fink G. R. Differential induction of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase genes in Arabidopsis thaliana by wounding and pathogenic attack. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8821–8825. doi: 10.1073/pnas.88.19.8821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Klee H. J., Muskopf Y. M., Gasser C. S. Cloning of an Arabidopsis thaliana gene encoding 5-enolpyruvylshikimate-3-phosphate synthase: sequence analysis and manipulation to obtain glyphosate-tolerant plants. Mol Gen Genet. 1987 Dec;210(3):437–442. doi: 10.1007/BF00327194. [DOI] [PubMed] [Google Scholar]
  21. Konieczny A., Ausubel F. M. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J. 1993 Aug;4(2):403–410. doi: 10.1046/j.1365-313x.1993.04020403.x. [DOI] [PubMed] [Google Scholar]
  22. Kos T., Kuijvenhoven A., Hessing H. G., Pouwels P. H., van den Hondel C. A. Nucleotide sequence of the Aspergillus niger trpC gene: structural relationship with analogous genes of other organisms. Curr Genet. 1988 Feb;13(2):137–144. doi: 10.1007/BF00365648. [DOI] [PubMed] [Google Scholar]
  23. Lander E. S., Green P., Abrahamson J., Barlow A., Daly M. J., Lincoln S. E., Newberg L. A., Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics. 1987 Oct;1(2):174–181. doi: 10.1016/0888-7543(87)90010-3. [DOI] [PubMed] [Google Scholar]
  24. Last R. L., Bissinger P. H., Mahoney D. J., Radwanski E. R., Fink G. R. Tryptophan mutants in Arabidopsis: the consequences of duplicated tryptophan synthase beta genes. Plant Cell. 1991 Apr;3(4):345–358. doi: 10.1105/tpc.3.4.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Last R. L., Fink G. R. Tryptophan-Requiring Mutants of the Plant Arabidopsis thaliana. Science. 1988 Apr 15;240(4850):305–310. doi: 10.1126/science.240.4850.305. [DOI] [PubMed] [Google Scholar]
  26. Leutwiler L. S., Meyerowitz E. M., Tobin E. M. Structure and expression of three light-harvesting chlorophyll a/b-binding protein genes in Arabidopsis thaliana. Nucleic Acids Res. 1986 May 27;14(10):4051–4064. doi: 10.1093/nar/14.10.4051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Li J., Ou-Lee T. M., Raba R., Amundson R. G., Last R. L. Arabidopsis Flavonoid Mutants Are Hypersensitive to UV-B Irradiation. Plant Cell. 1993 Feb;5(2):171–179. doi: 10.1105/tpc.5.2.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Meagher R. B., Berry-Lowe S., Rice K. Molecular evolution of the small subunit of ribulose bisphosphate carboxylase: nucleotide substitution and gene conversion. Genetics. 1989 Dec;123(4):845–863. doi: 10.1093/genetics/123.4.845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Niyogi K. K., Fink G. R. Two anthranilate synthase genes in Arabidopsis: defense-related regulation of the tryptophan pathway. Plant Cell. 1992 Jun;4(6):721–733. doi: 10.1105/tpc.4.6.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Niyogi K. K., Last R. L., Fink G. R., Keith B. Suppressors of trp1 fluorescence identify a new arabidopsis gene, TRP4, encoding the anthranilate synthase beta subunit. Plant Cell. 1993 Sep;5(9):1011–1027. doi: 10.1105/tpc.5.9.1011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Normanly J., Cohen J. D., Fink G. R. Arabidopsis thaliana auxotrophs reveal a tryptophan-independent biosynthetic pathway for indole-3-acetic acid. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10355–10359. doi: 10.1073/pnas.90.21.10355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Pearson W. R., Lipman D. J. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. doi: 10.1073/pnas.85.8.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Pruitt K. D., Last R. L. Expression patterns of duplicate tryptophan synthase beta genes in Arabidopsis thaliana. Plant Physiol. 1993 Jul;102(3):1019–1026. doi: 10.1104/pp.102.3.1019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rose A. B., Casselman A. L., Last R. L. A Phosphoribosylanthranilate Transferase Gene Is Defective in Blue Fluorescent Arabidopsis thaliana Tryptophan Mutants. Plant Physiol. 1992 Oct;100(2):582–592. doi: 10.1104/pp.100.2.582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Santos M. A. An improved method for the small scale preparation of bacteriophage DNA based on phage precipitation by zinc chloride. Nucleic Acids Res. 1991 Oct 11;19(19):5442–5442. doi: 10.1093/nar/19.19.5442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Schechtman M. G., Yanofsky C. Structure of the trifunctional trp-1 gene from Neurospora crassa and its aberrant expression in Escherichia coli. J Mol Appl Genet. 1983;2(1):83–99. [PubMed] [Google Scholar]
  37. Schmidt R., Putterill J., West J., Cnops G., Robson F., Coupland G., Dean C. Analysis of clones carrying repeated DNA sequences in two YAC libraries of Arabidopsis thaliana DNA. Plant J. 1994 May;5(5):735–744. doi: 10.1111/j.1365-313x.1994.00735.x. [DOI] [PubMed] [Google Scholar]
  38. Senecoff J. F., Meagher R. B. Isolating the Arabidopsis thaliana genes for de novo purine synthesis by suppression of Escherichia coli mutants. I. 5'-Phosphoribosyl-5-aminoimidazole synthetase. Plant Physiol. 1993 Jun;102(2):387–399. doi: 10.1104/pp.102.2.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Valvekens D., Van Montagu M., Van Lijsebettens M. Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5536–5540. doi: 10.1073/pnas.85.15.5536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Ward E. R., Jen G. C. Isolation of single-copy-sequence clones from a yeast artificial chromosome library of randomly-sheared Arabidopsis thaliana DNA. Plant Mol Biol. 1990 Apr;14(4):561–568. doi: 10.1007/BF00027501. [DOI] [PubMed] [Google Scholar]
  41. Wright A. D., Sampson M. B., Neuffer M. G., Michalczuk L., Slovin J. P., Cohen J. D. Indole-3-Acetic Acid Biosynthesis in the Mutant Maize orange pericarp, a Tryptophan Auxotroph. Science. 1991 Nov 15;254(5034):998–1000. doi: 10.1126/science.254.5034.998. [DOI] [PubMed] [Google Scholar]
  42. Yanofsky C., Horn V., Bonner M., Stasiowski S. Polarity and enzyme functions in mutants of the first three genes of the tryptophan operon of Escherichia coli. Genetics. 1971 Dec;69(4):409–433. doi: 10.1093/genetics/69.4.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Zhao J., Last R. L. Immunological characterization and chloroplast localization of the tryptophan biosynthetic enzymes of the flowering plant Arabidopsis thaliana. J Biol Chem. 1995 Mar 17;270(11):6081–6087. doi: 10.1074/jbc.270.11.6081. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES