Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1995 Jun;7(6):689–704. doi: 10.1105/tpc.7.6.689

Light-Harvesting Chlorophyll a/b Complexes: Interdependent Pigment Synthesis and Protein Assembly.

G F Plumley 1, G W Schmidt 1
PMCID: PMC160816  PMID: 12242383

Abstract

The biogenetic interdependence of light-harvesting chlorophyll (Chl) a/b proteins (LHCPs) and antenna pigments has been analyzed for two nuclear mutants of Chlamydomonas that have low levels of Chl b, neoxanthin, and loroxanthin. In mutant PA2.1, the apoprotein precursors (pLHCP II) of the major light-harvesting complex LHC II were synthesized at approximately wild-type rates, processed to their mature size, and rapidly degraded. Because the bulk of labile LHCP II in PA2.1 was soluble, a thylakoid integration factor apparently is defective in this strain. Chl a, Chl b, neoxanthin, and loroxanthin synthesis and accumulation were coordinately reduced in PA2.1, indicating that LHCP II play important regulatory or substrate roles in de novo synthesis of these pigments. Mutant GE2.27 is impaired principally in Chl b synthesis but nonetheless accumulated wild-type levels of all LHCPs. Topology studies of the GE2.27 LHCP II demonstrated that their insertion into thylakoids was incomplete even though they were not structurally altered. Thus, Chl b formation mediates conformational changes of LHCP II after thylakoid integration is initiated. GE2.27 also exhibited very low rates of neoxanthin synthesis and was unable to accumulate loroxanthin. Revertant GE2.27 strains with varying capacities for Chl b formation provided additional evidence that neoxanthin synthesis and accumulation are coupled with the final steps of LHCP II integration into thylakoids. We propose that biogenesis of LHC includes interdependent pigment synthesis/assembly events that occur during LHCP integration into the thylakoid membrane and that defects in these events account for the pleiotropic characteristics of many Chl b-deficient mutants.

Full Text

The Full Text of this article is available as a PDF (3.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adam Z., Hoffman N. E. Biogenesis of a photosystem I light-harvesting complex. Evidence for a membrane intermediate. Plant Physiol. 1993 May;102(1):35–43. doi: 10.1104/pp.102.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bellemare G., Bartlett S. G., Chua N. H. Biosynthesis of chlorophyll a/b-binding polypeptides in wild type and the chlorina f2 mutant of barley. J Biol Chem. 1982 Jul 10;257(13):7762–7767. [PubMed] [Google Scholar]
  3. Bennett J. Biosynthesis of the light-harvesting chlorophyll a/b protein. Polypeptide turnover in darkness. Eur J Biochem. 1981 Aug;118(1):61–70. doi: 10.1111/j.1432-1033.1981.tb05486.x. [DOI] [PubMed] [Google Scholar]
  4. Cammarata K. V., Schmidt G. W. In vitro reconstitution of a light-harvesting gene product: deletion mutagenesis and analyses of pigment binding. Biochemistry. 1992 Mar 17;31(10):2779–2789. doi: 10.1021/bi00125a019. [DOI] [PubMed] [Google Scholar]
  5. Cleveland D. W., Fischer S. G., Kirschner M. W., Laemmli U. K. Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J Biol Chem. 1977 Feb 10;252(3):1102–1106. [PubMed] [Google Scholar]
  6. Cline K. Import of proteins into chloroplasts. Membrane integration of a thylakoid precursor protein reconstituted in chloroplast lysates. J Biol Chem. 1986 Nov 5;261(31):14804–14810. [PubMed] [Google Scholar]
  7. Cline K. Light-Harvesting Chlorophyll a/b Protein : Membrane Insertion, Proteolytic Processing, Assembly into LHC II, and Localization to Appressed Membranes Occurs in Chloroplast Lysates. Plant Physiol. 1988 Apr;86(4):1120–1126. doi: 10.1104/pp.86.4.1120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Duysen M. E., Freeman T. P., Williams N. D., Huckle L. L. Chloramphenicol stimulation of light harvesting chlorophyll protein complex accumulation in a chlorophyll B deficient wheat mutant. Plant Physiol. 1985 Jul;78(3):531–536. doi: 10.1104/pp.78.3.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Eichacker L. A., Soll J., Lauterbach P., Rüdiger W., Klein R. R., Mullet J. E. In vitro synthesis of chlorophyll a in the dark triggers accumulation of chlorophyll a apoproteins in barley etioplasts. J Biol Chem. 1990 Aug 15;265(23):13566–13571. [PubMed] [Google Scholar]
  10. Eichacker L., Paulsen H., Rüdiger W. Synthesis of chlorophyll a regulates translation of chlorophyll a apoproteins P700, CP47, CP43 and D2 in barley etioplasts. Eur J Biochem. 1992 Apr 1;205(1):17–24. doi: 10.1111/j.1432-1033.1992.tb16747.x. [DOI] [PubMed] [Google Scholar]
  11. Falbel T. G., Staehelin L. A. Characterization of a family of chlorophyll-deficient wheat (Triticum) and barley (Hordeum vulgare) mutants with defects in the magnesium-insertion step of chlorophyll biosynthesis. Plant Physiol. 1994 Feb;104(2):639–648. doi: 10.1104/pp.104.2.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fradkin L. I., Chkanikova R. A., Shlyk A. A. Coupling of chlorophyll metabolism with submembrane chloroplast particles, isolated with digitonin and gel electrophoresis. Plant Physiol. 1981 Mar;67(3):555–559. doi: 10.1104/pp.67.3.555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Greer K. L., Plumley F. G., Schmidt G. W. The Water Oxidation Complex of Chlamydomonas: Accumulation and Maturation of the Largest Subunit in Photosystem II Mutants. Plant Physiol. 1986 Sep;82(1):114–120. doi: 10.1104/pp.82.1.114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hoober J. K., Hughes M. J. Purification and Characterization of a Membrane-Bound Protease from Chlamydomonas reinhardtii. Plant Physiol. 1992 Jul;99(3):932–937. doi: 10.1104/pp.99.3.932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Huang L., Adam Z., Hoffman N. E. Deletion Mutants of Chlorophyll a/b Binding Proteins Are Efficiently Imported into Chloroplasts but Do Not Integrate into Thylakoid Membranes. Plant Physiol. 1992 May;99(1):247–255. doi: 10.1104/pp.99.1.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jensen K. H., Herrin D. L., Plumley F. G., Schmidt G. W. Biogenesis of photosystem II complexes: transcriptional, translational, and posttranslational regulation. J Cell Biol. 1986 Oct;103(4):1315–1325. doi: 10.1083/jcb.103.4.1315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Johanningmeier U. Possible control of transcript levels by chlorophyll precursors in Chlamydomonas. Eur J Biochem. 1988 Nov 1;177(2):417–424. doi: 10.1111/j.1432-1033.1988.tb14391.x. [DOI] [PubMed] [Google Scholar]
  18. Keegstra K. Transport and routing of proteins into chloroplasts. Cell. 1989 Jan 27;56(2):247–253. doi: 10.1016/0092-8674(89)90898-2. [DOI] [PubMed] [Google Scholar]
  19. Kühlbrandt W., Wang D. N., Fujiyoshi Y. Atomic model of plant light-harvesting complex by electron crystallography. Nature. 1994 Feb 17;367(6464):614–621. doi: 10.1038/367614a0. [DOI] [PubMed] [Google Scholar]
  20. Laskey R. A., Mills A. D. Quantitative film detection of 3H and 14C in polyacrylamide gels by fluorography. Eur J Biochem. 1975 Aug 15;56(2):335–341. doi: 10.1111/j.1432-1033.1975.tb02238.x. [DOI] [PubMed] [Google Scholar]
  21. Maloney M. A., Hoober J. K., Marks D. B. Kinetics of Chlorophyll Accumulation and Formation of Chlorophyll-Protein Complexes during Greening of Chlamydomonas reinhardtii y-1 at 38 degrees C. Plant Physiol. 1989 Nov;91(3):1100–1106. doi: 10.1104/pp.91.3.1100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Marshall J. S., DeRocher A. E., Keegstra K., Vierling E. Identification of heat shock protein hsp70 homologues in chloroplasts. Proc Natl Acad Sci U S A. 1990 Jan;87(1):374–378. doi: 10.1073/pnas.87.1.374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Peter G. F., Thornber J. P. Biochemical composition and organization of higher plant photosystem II light-harvesting pigment-proteins. J Biol Chem. 1991 Sep 5;266(25):16745–16754. [PubMed] [Google Scholar]
  24. Plumley F. G., Schmidt G. W. Nitrogen-dependent regulation of photosynthetic gene expression. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2678–2682. doi: 10.1073/pnas.86.8.2678. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Porra R. J., Schäfer W., Cmiel E., Katheder I., Scheer H. The derivation of the formyl-group oxygen of chlorophyll b in higher plants from molecular oxygen. Achievement of high enrichment of the 7-formyl-group oxygen from 18O2 in greening maize leaves. Eur J Biochem. 1994 Jan 15;219(1-2):671–679. doi: 10.1111/j.1432-1033.1994.tb19983.x. [DOI] [PubMed] [Google Scholar]
  26. Pålsson L. O., Spangfort M. D., Gulbinas V., Gillbro T. Ultrafast chlorophyll b-chlorophyll a excitation energy transfer in the isolated light harvesting complex, LHC II, of green plants. Implications for the organisation of chlorophylls. FEBS Lett. 1994 Feb 14;339(1-2):134–138. doi: 10.1016/0014-5793(94)80400-1. [DOI] [PubMed] [Google Scholar]
  27. Reed J. E., Cline K., Stephens L. C., Bacot K. O., Viitanen P. V. Early events in the import/assembly pathway of an integral thylakoid protein. Eur J Biochem. 1990 Nov 26;194(1):33–42. doi: 10.1111/j.1432-1033.1990.tb19423.x. [DOI] [PubMed] [Google Scholar]
  28. Rock C. D., Zeevaart J. A. The aba mutant of Arabidopsis thaliana is impaired in epoxy-carotenoid biosynthesis. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7496–7499. doi: 10.1073/pnas.88.17.7496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ryrie I. J. Immunological evidence for apoproteins of the light-harvesting chlorophyll-protein complex in a mutant of barley lacking chlorophyll b. Eur J Biochem. 1983 Mar 1;131(1):149–155. doi: 10.1111/j.1432-1033.1983.tb07242.x. [DOI] [PubMed] [Google Scholar]
  30. Schmidt G. W., Matlin K. S., Chua N. H. A rapid procedure for selective enrichment of photosynthetic electron transport mutants. Proc Natl Acad Sci U S A. 1977 Feb;74(2):610–614. doi: 10.1073/pnas.74.2.610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Schmidt G. W., Mishkind M. L. Rapid degradation of unassembled ribulose 1,5-bisphosphate carboxylase small subunits in chloroplasts. Proc Natl Acad Sci U S A. 1983 May;80(9):2632–2636. doi: 10.1073/pnas.80.9.2632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Schneegurt M. A., Beale S. I. Origin of the chlorophyll b formyl oxygen in Chlorella vulgaris. Biochemistry. 1992 Dec 1;31(47):11677–11683. doi: 10.1021/bi00162a002. [DOI] [PubMed] [Google Scholar]
  33. Tsugeki R., Nishimura M. Interaction of homologues of Hsp70 and Cpn60 with ferredoxin-NADP+ reductase upon its import into chloroplasts. FEBS Lett. 1993 Apr 12;320(3):198–202. doi: 10.1016/0014-5793(93)80585-i. [DOI] [PubMed] [Google Scholar]
  34. White M. J., Green B. R. Polypeptides belonging to each of the three major chlorophyll a + b protein complexes are present in a chlorophyll-b-less barley mutant. Eur J Biochem. 1987 Jun 15;165(3):531–535. doi: 10.1111/j.1432-1033.1987.tb11471.x. [DOI] [PubMed] [Google Scholar]
  35. Yalovsky S., Paulsen H., Michaeli D., Chitnis P. R., Nechushtai R. Involvement of a chloroplast HSP70 heat shock protein in the integration of a protein (light-harvesting complex protein precursor) into the thylakoid membrane. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5616–5619. doi: 10.1073/pnas.89.12.5616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Yuan J., Henry R., Cline K. Stromal factor plays an essential role in protein integration into thylakoids that cannot be replaced by unfolding or by heat shock protein Hsp70. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8552–8556. doi: 10.1073/pnas.90.18.8552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zurdo J., Fernandez-Cabrera C., Ramirez J. M. A structural role of the carotenoid in the light-harvesting II protein of Rhodobacter capsulatus. Biochem J. 1993 Mar 1;290(Pt 2):531–537. doi: 10.1042/bj2900531. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES