Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1995 Jun;7(6):747–757. doi: 10.1105/tpc.7.6.747

Molecular characterization of BET1, a gene expressed in the endosperm transfer cells of maize.

G Hueros 1, S Varotto 1, F Salamini 1, R D Thompson 1
PMCID: PMC160827  PMID: 7647565

Abstract

A cDNA clone, BET1 (for basal endosperm transfer layer), was isolated from a cDNA bank prepared from 10-days after pollination (DAP) maize endosperm mRNA. BET1 mRNA was shown to encode a 7-kD cell wall polypeptide. Both the mRNA and protein were restricted in their distribution to the basal endosperm transfer layer and were not expressed elsewhere in the plant. BET1 expression commenced at 9 DAP, reached a maximum between 12 and 16 DAP, and declined after 16 DAP. The initial accumulation of the BET1 polypeptide reached a plateau by 16 DAP and declined thereafter, becoming undetectable by 20 DAP. The antibody raised against the BET1 protein reacted with a number of polypeptides of higher molecular mass than the BET1 monomer. Most of these were present in cytosolic fractions and were found in nonbasal cell endosperm extracts, but three species appeared to be basal cell specific. This result and the reactivity of exhaustively extracted cell wall material with the BET1 antibody suggest that a fraction of the protein is deposited in a covalently bound form in the extracellular matrix. We propose that the BET1 protein plays a role in the structural specialization of the transfer cells. In addition, BET1 provides a new molecular marker for the development of this endosperm domain.

Full Text

The Full Text of this article is available as a PDF (2.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bown D. P., Bolwell G. P., Gatehouse J. A. Characterisation of potato (Solanum tuberosum L.) extensins: a novel extensin-like cDNA from dormant tubers. Gene. 1993 Dec 8;134(2):229–233. doi: 10.1016/0378-1119(93)90098-n. [DOI] [PubMed] [Google Scholar]
  2. Bradley D. J., Kjellbom P., Lamb C. J. Elicitor- and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defense response. Cell. 1992 Jul 10;70(1):21–30. doi: 10.1016/0092-8674(92)90530-p. [DOI] [PubMed] [Google Scholar]
  3. Brownleader M. D., Dey P. M. Purification of extensin from cell walls of tomato (hybrid of Lycopersicon esculentum and L. peruvianum) cells in suspension culture. Planta. 1993;191(4):457–469. doi: 10.1007/BF00195747. [DOI] [PubMed] [Google Scholar]
  4. Chay C. H., Buehler E. G., Thorn J. M., Whelan T. M., Bedinger P. A. Purification of maize pollen exines and analysis of associated proteins. Plant Physiol. 1992 Oct;100(2):756–761. doi: 10.1104/pp.100.2.756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Domingo C., Gómez M. D., Cañas L., Hernández-Yago J., Conejero V., Vera P. A novel extracellular matrix protein from tomato associated with lignified secondary cell walls. Plant Cell. 1994 Aug;6(8):1035–1047. doi: 10.1105/tpc.6.8.1035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Franken P., Niesbach-Klösgen U., Weydemann U., Maréchal-Drouard L., Saedler H., Wienand U. The duplicated chalcone synthase genes C2 and Whp (white pollen) of Zea mays are independently regulated; evidence for translational control of Whp expression by the anthocyanin intensifying gene in. EMBO J. 1991 Sep;10(9):2605–2612. doi: 10.1002/j.1460-2075.1991.tb07802.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gifford R. M., Thorne J. H., Hitz W. D., Giaquinta R. T. Crop productivity and photoassimilate partitioning. Science. 1984 Aug 24;225(4664):801–808. doi: 10.1126/science.225.4664.801. [DOI] [PubMed] [Google Scholar]
  8. Kawalleck P., Somssich I. E., Feldbrügge M., Hahlbrock K., Weisshaar B. Polyubiquitin gene expression and structural properties of the ubi4-2 gene in Petroselinum crispum. Plant Mol Biol. 1993 Feb;21(4):673–684. doi: 10.1007/BF00014550. [DOI] [PubMed] [Google Scholar]
  9. Lopes M. A., Larkins B. A. Endosperm origin, development, and function. Plant Cell. 1993 Oct;5(10):1383–1399. doi: 10.1105/tpc.5.10.1383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lowe J, Nelson O E. Miniature Seed-a Study in the Development of a Defective Caryopsis in Maize. Genetics. 1946 Sep;31(5):525–533. doi: 10.1093/genetics/31.5.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Miller M. E., Chourey P. S. The Maize Invertase-Deficient miniature-1 Seed Mutation Is Associated with Aberrant Pedicel and Endosperm Development. Plant Cell. 1992 Mar;4(3):297–305. doi: 10.1105/tpc.4.3.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Neuffer M. G., Sheridan W. F. Defective kernel mutants of maize. I. Genetic and lethality studies. Genetics. 1980 Aug;95(4):929–944. doi: 10.1093/genetics/95.4.929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Porter G. A., Knievel D. P., Shannon J. C. Sugar Efflux from Maize (Zea mays L.) Pedicel Tissue. Plant Physiol. 1985 Mar;77(3):524–531. doi: 10.1104/pp.77.3.524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Showalter A. M. Structure and function of plant cell wall proteins. Plant Cell. 1993 Jan;5(1):9–23. doi: 10.1105/tpc.5.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sive H. L., St John T. A simple subtractive hybridization technique employing photoactivatable biotin and phenol extraction. Nucleic Acids Res. 1988 Nov 25;16(22):10937–10937. doi: 10.1093/nar/16.22.10937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Stafstrom J. P., Staehelin L. A. Cross-linking patterns in salt-extractable extensin from carrot cell walls. Plant Physiol. 1986 May;81(1):234–241. doi: 10.1104/pp.81.1.234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wang N., Fisher D. B. Monitoring Phloem Unloading and Post-Phloem Transport by Microperfusion of Attached Wheat Grains. Plant Physiol. 1994 Jan;104(1):7–16. doi: 10.1104/pp.104.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wang N., Fisher D. B. The Use of Fluorescent Tracers to Characterize the Post-Phloem Transport Pathway in Maternal Tissues of Developing Wheat Grains. Plant Physiol. 1994 Jan;104(1):17–27. doi: 10.1104/pp.104.1.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. von Heijne G. Signal sequences. The limits of variation. J Mol Biol. 1985 Jul 5;184(1):99–105. doi: 10.1016/0022-2836(85)90046-4. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES