Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1995 Jun;7(6):785–794. doi: 10.1105/tpc.7.6.785

A nodule-specific gene encoding a subtilisin-like protease is expressed in early stages of actinorhizal nodule development.

A Ribeiro 1, A D Akkermans 1, A van Kammen 1, T Bisseling 1, K Pawlowski 1
PMCID: PMC160833  PMID: 7647567

Abstract

To identify genes specifically expressed during early stages of actinorhizal nodule development, a cDNA library made from poly(A) RNA from root nodules of Alnus glutinosa was screened differentially with nodule and root cDNA, respectively. Seven nodule-enhanced and four nodule-specific cDNA clones were isolated. By using in situ hybridization, two of the nodule-specific cDNAs were shown to be expressed at the highest levels in infected cells before the onset of nitrogen fixation; one of them, ag12 (A. glutinosa), was examined in detail. Sequencing showed that ag12 codes for a serine protease of the subtilisin (EC 3.4.21.14) family. Subtilisins previously appeared to be limited to microorganisms. However, subtilisin-like serine proteases have recently been found in archaebacteria, fungi, and yeasts as well as in mammals; a plant subtilisin has also been sequenced. In yeast and mammals, subtilases are responsible for processing peptide hormones. A homolog of ag12, ara12, was identified in Arabidopsis; it was expressed in all organs, and its expression levels were highest during silique development. Hence, our study shows that subtilases are also involved in both symbiotic and nonsymbiotic processes in plant development.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Barr P. J., Mason O. B., Landsberg K. E., Wong P. A., Kiefer M. C., Brake A. J. cDNA and gene structure for a human subtilisin-like protease with cleavage specificity for paired basic amino acid residues. DNA Cell Biol. 1991 Jun;10(5):319–328. doi: 10.1089/dna.1991.10.319. [DOI] [PubMed] [Google Scholar]
  3. Cejudo F. J., Murphy G., Chinoy C., Baulcombe D. C. A gibberellin-regulated gene from wheat with sequence homology to cathepsin B of mammalian cells. Plant J. 1992 Nov;2(6):937–948. [PubMed] [Google Scholar]
  4. Cervantes E., Rodríguez A., Nicolás G. Ethylene regulates the expression of a cysteine proteinase gene during germination of chickpea (Cicer arietinum L.). Plant Mol Biol. 1994 May;25(2):207–215. doi: 10.1007/BF00023238. [DOI] [PubMed] [Google Scholar]
  5. Christensen T., Dennis E. S., Peacock J. W., Landsmann J., Marcker K. A. Hemoglobin genes in non-legumes: cloning and characterization of a Casuarina glauca hemoglobin gene. Plant Mol Biol. 1991 Feb;16(2):339–344. doi: 10.1007/BF00020566. [DOI] [PubMed] [Google Scholar]
  6. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  8. Fontaine M. S., Lancelle S. A., Torrey J. G. Initiation and ontogeny of vesicles in cultured Frankia sp. strain HFPArI3. J Bacteriol. 1984 Dec;160(3):921–927. doi: 10.1128/jb.160.3.921-927.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Franssen H. J., Vijn I., Yang W. C., Bisseling T. Developmental aspects of the Rhizobium-legume symbiosis. Plant Mol Biol. 1992 May;19(1):89–107. doi: 10.1007/BF00015608. [DOI] [PubMed] [Google Scholar]
  10. Goetting-Minesky M. P., Mullin B. C. Differential gene expression in an actinorhizal symbiosis: evidence for a nodule-specific cysteine proteinase. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9891–9895. doi: 10.1073/pnas.91.21.9891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jacobsen-Lyon K., Jensen E. O., Jørgensen J. E., Marcker K. A., Peacock W. J., Dennis E. S. Symbiotic and nonsymbiotic hemoglobin genes of Casuarina glauca. Plant Cell. 1995 Feb;7(2):213–223. doi: 10.1105/tpc.7.2.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kouchi H., Hata S. Isolation and characterization of novel nodulin cDNAs representing genes expressed at early stages of soybean nodule development. Mol Gen Genet. 1993 Apr;238(1-2):106–119. doi: 10.1007/BF00279537. [DOI] [PubMed] [Google Scholar]
  13. Küster H., Frühling M., Perlick A. M., Pühler A. The sucrose synthase gene is predominantly expressed in the root nodule tissue of Vicia faba. Mol Plant Microbe Interact. 1993 Jul-Aug;6(4):507–514. doi: 10.1094/mpmi-6-507. [DOI] [PubMed] [Google Scholar]
  14. Lin E., Burns D. J., Gardner R. C. Fruit developmental regulation of the kiwifruit actinidin promoter is conserved in transgenic petunia plants. Plant Mol Biol. 1993 Nov;23(3):489–499. doi: 10.1007/BF00019297. [DOI] [PubMed] [Google Scholar]
  15. Maldener I., Lockau W., Cai Y. P., Wolk C. P. Calcium-dependent protease of the cyanobacterium Anabaena: molecular cloning and expression of the gene in Escherichia coli, sequencing and site-directed mutagenesis. Mol Gen Genet. 1991 Jan;225(1):113–120. doi: 10.1007/BF00282649. [DOI] [PubMed] [Google Scholar]
  16. Miao G. H., Verma D. P. Soybean nodulin-26 gene encoding a channel protein is expressed only in the infected cells of nodules and is regulated differently in roots of homologous and heterologous plants. Plant Cell. 1993 Jul;5(7):781–794. doi: 10.1105/tpc.5.7.781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mizuno K., Nakamura T., Ohshima T., Tanaka S., Matsuo H. Yeast KEX2 genes encodes an endopeptidase homologous to subtilisin-like serine proteases. Biochem Biophys Res Commun. 1988 Oct 14;156(1):246–254. doi: 10.1016/s0006-291x(88)80832-5. [DOI] [PubMed] [Google Scholar]
  18. Nygård O., Nilsson L. Characterization of the ribosomal properties required for formation of a GTPase active complex with the eukaryotic elongation factor 2. Eur J Biochem. 1989 Feb 15;179(3):603–608. doi: 10.1111/j.1432-1033.1989.tb14589.x. [DOI] [PubMed] [Google Scholar]
  19. Pladys D., Dimitrijevic L., Rigaud J. Localization of a protease in protoplast preparations in infected cells of French bean nodules. Plant Physiol. 1991 Nov;97(3):1174–1180. doi: 10.1104/pp.97.3.1174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Roebroek A. J., Pauli I. G., Zhang Y., van de Ven W. J. cDNA sequence of a Drosophila melanogaster gene, Dfur1, encoding a protein structurally related to the subtilisin-like proprotein processing enzyme furin. FEBS Lett. 1991 Sep 9;289(2):133–137. doi: 10.1016/0014-5793(91)81052-a. [DOI] [PubMed] [Google Scholar]
  21. Rudenskaia G. N. Novye podsemeistva subtilizinov. Bioorg Khim. 1994 May;20(5):475–484. [PubMed] [Google Scholar]
  22. Schaller A., Ryan C. A. Identification of a 50-kDa systemin-binding protein in tomato plasma membranes having Kex2p-like properties. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):11802–11806. doi: 10.1073/pnas.91.25.11802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Scheres B., Van De Wiel C., Zalensky A., Horvath B., Spaink H., Van Eck H., Zwartkruis F., Wolters A. M., Gloudemans T., Van Kammen A. The ENOD12 gene product is involved in the infection process during the pea-Rhizobium interaction. Cell. 1990 Jan 26;60(2):281–294. doi: 10.1016/0092-8674(90)90743-x. [DOI] [PubMed] [Google Scholar]
  24. St Leger R. J., Frank D. C., Roberts D. W., Staples R. C. Molecular cloning and regulatory analysis of the cuticle-degrading-protease structural gene from the entomopathogenic fungus Metarhizium anisopliae. Eur J Biochem. 1992 Mar 15;204(3):991–1001. doi: 10.1111/j.1432-1033.1992.tb16721.x. [DOI] [PubMed] [Google Scholar]
  25. Taylor E. R., Nie X. Z., MacGregor A. W., Hill R. D. A cereal haemoglobin gene is expressed in seed and root tissues under anaerobic conditions. Plant Mol Biol. 1994 Mar;24(6):853–862. doi: 10.1007/BF00014440. [DOI] [PubMed] [Google Scholar]
  26. Thummler F., Verma D. P. Nodulin-100 of soybean is the subunit of sucrose synthase regulated by the availability of free heme in nodules. J Biol Chem. 1987 Oct 25;262(30):14730–14736. [PubMed] [Google Scholar]
  27. Törmäkangas K., Runeberg-Roos P., Ostman A., Tilgmann C., Sarkkinen P., Kervinen J., Mikola L., Kalkkinen N. Aspartic proteinase from barley seeds is related to animal cathepsin D. Adv Exp Med Biol. 1991;306:355–359. doi: 10.1007/978-1-4684-6012-4_43. [DOI] [PubMed] [Google Scholar]
  28. Vos P., Simons G., Siezen R. J., de Vos W. M. Primary structure and organization of the gene for a procaryotic, cell envelope-located serine proteinase. J Biol Chem. 1989 Aug 15;264(23):13579–13585. [PubMed] [Google Scholar]
  29. Wells J. A., Ferrari E., Henner D. J., Estell D. A., Chen E. Y. Cloning, sequencing, and secretion of Bacillus amyloliquefaciens subtilisin in Bacillus subtilis. Nucleic Acids Res. 1983 Nov 25;11(22):7911–7925. doi: 10.1093/nar/11.22.7911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Williams J., Bulman M., Huttly A., Phillips A., Neill S. Characterization of a cDNA from Arabidopsis thaliana encoding a potential thiol protease whose expression is induced independently by wilting and abscisic acid. Plant Mol Biol. 1994 May;25(2):259–270. doi: 10.1007/BF00023242. [DOI] [PubMed] [Google Scholar]
  31. Wilson R. C., Long F., Maruoka E. M., Cooper J. B. A new proline-rich early nodulin from Medicago truncatula is highly expressed in nodule meristematic cells. Plant Cell. 1994 Sep;6(9):1265–1275. doi: 10.1105/tpc.6.9.1265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Yamagata H., Masuzawa T., Nagaoka Y., Ohnishi T., Iwasaki T. Cucumisin, a serine protease from melon fruits, shares structural homology with subtilisin and is generated from a large precursor. J Biol Chem. 1994 Dec 30;269(52):32725–32731. [PubMed] [Google Scholar]
  33. Yang J., Kramer J. M. In vitro mutagenesis of Caenorhabditis elegans cuticle collagens identifies a potential subtilisin-like protease cleavage site and demonstrates that carboxyl domain disulfide bonding is required for normal function but not assembly. Mol Cell Biol. 1994 Apr;14(4):2722–2730. doi: 10.1128/mcb.14.4.2722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Yang W. C., Katinakis P., Hendriks P., Smolders A., de Vries F., Spee J., van Kammen A., Bisseling T., Franssen H. Characterization of GmENOD40, a gene showing novel patterns of cell-specific expression during soybean nodule development. Plant J. 1993 Apr;3(4):573–585. doi: 10.1046/j.1365-313x.1993.03040573.x. [DOI] [PubMed] [Google Scholar]
  35. von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986 Jun 11;14(11):4683–4690. doi: 10.1093/nar/14.11.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES