Abstract
We analyzed DNA sequences that regulate the expression of an isocitrate lyase gene from Brassica napus L. during late embryogenesis and during postgerminative growth to determine whether glyoxysomal function is induced by a common mechanism at different developmental stages. beta-Glucuronidase constructs were used both in transient expression assays in B. napus and in transgenic Arabidopsis thaliana to identify the segments of the isocitrate lyase 5' flanking region that influence promoter activity. DNA sequences that play the principal role in activating the promoter during post-germinative growth are located more than 1,200 bp upstream of the gene. Distinct DNA sequences that were sufficient for high-level expression during late embryogenesis but only low-level expression during postgerminative growth were also identified. Other parts of the 5' flanking region increased promoter activity both in developing seed and in seedlings. We conclude that a combination of elements is involved in regulating the isocitrate lyase gene and that distinct DNA sequences play primary roles in activating the gene in embryos and in seedlings. These findings suggest that different signals contribute to the induction of glyoxysomal function during these two developmental stages. We also showed that some of the constructs were expressed differently in transient expression assays and in transgenic plants.
Full Text
The Full Text of this article is available as a PDF (1.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bruce W. B., Christensen A. H., Klein T., Fromm M., Quail P. H. Photoregulation of a phytochrome gene promoter from oat transferred into rice by particle bombardment. Proc Natl Acad Sci U S A. 1989 Dec;86(24):9692–9696. doi: 10.1073/pnas.86.24.9692. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chin A. M., Feldheim D. A., Saier M. H., Jr Altered transcriptional patterns affecting several metabolic pathways in strains of Salmonella typhimurium which overexpress the fructose regulon. J Bacteriol. 1989 May;171(5):2424–2434. doi: 10.1128/jb.171.5.2424-2434.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ettinger W. F., Harada J. J. Translational or post-translational processes affect differentially the accumulation of isocitrate lyase and malate synthase proteins and enzyme activities in embryos and seedlings of Brassica napus. Arch Biochem Biophys. 1990 Aug 15;281(1):139–143. doi: 10.1016/0003-9861(90)90423-v. [DOI] [PubMed] [Google Scholar]
- Finkelstein R. R., Crouch M. L. Rapeseed embryo development in culture on high osmoticum is similar to that in seeds. Plant Physiol. 1986 Jul;81(3):907–912. doi: 10.1104/pp.81.3.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fromental C., Kanno M., Nomiyama H., Chambon P. Cooperativity and hierarchical levels of functional organization in the SV40 enhancer. Cell. 1988 Sep 23;54(7):943–953. doi: 10.1016/0092-8674(88)90109-2. [DOI] [PubMed] [Google Scholar]
- Fromm M. E., Taylor L. P., Walbot V. Stable transformation of maize after gene transfer by electroporation. 1986 Feb 27-Mar 5Nature. 319(6056):791–793. doi: 10.1038/319791a0. [DOI] [PubMed] [Google Scholar]
- Goff S. A., Klein T. M., Roth B. A., Fromm M. E., Cone K. C., Radicella J. P., Chandler V. L. Transactivation of anthocyanin biosynthetic genes following transfer of B regulatory genes into maize tissues. EMBO J. 1990 Aug;9(8):2517–2522. doi: 10.1002/j.1460-2075.1990.tb07431.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Graham I. A., Baker C. J., Leaver C. J. Analysis of the cucumber malate synthase gene promoter by transient expression and gel retardation assays. Plant J. 1994 Dec;6(6):893–902. doi: 10.1046/j.1365-313x.1994.6060893.x. [DOI] [PubMed] [Google Scholar]
- Graham I. A., Denby K. J., Leaver C. J. Carbon Catabolite Repression Regulates Glyoxylate Cycle Gene Expression in Cucumber. Plant Cell. 1994 May;6(5):761–772. doi: 10.1105/tpc.6.5.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Graham I. A., Leaver C. J., Smith S. M. Induction of Malate Synthase Gene Expression in Senescent and Detached Organs of Cucumber. Plant Cell. 1992 Mar;4(3):349–357. doi: 10.1105/tpc.4.3.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones J. D., Dunsmuir P., Bedbrook J. High level expression of introduced chimaeric genes in regenerated transformed plants. EMBO J. 1985 Oct;4(10):2411–2418. doi: 10.1002/j.1460-2075.1985.tb03949.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koren G., Lau A., Klein J., Golas C., Bologa-Campeanu M., Soldin S., MacLeod S. M., Prober C. Pharmacokinetics and adverse effects of amphotericin B in infants and children. J Pediatr. 1988 Sep;113(3):559–563. doi: 10.1016/s0022-3476(88)80653-x. [DOI] [PubMed] [Google Scholar]
- Kornberg H. L. The role and control of the glyoxylate cycle in Escherichia coli. Biochem J. 1966 Apr;99(1):1–11. doi: 10.1042/bj0990001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lado P., Schwendimann M., Marrè E. Repression of isocitrate lyase synthesis in seeds germinated in the presence of glucose. Biochim Biophys Acta. 1968 Mar 18;157(1):140–148. doi: 10.1016/0005-2787(68)90272-4. [DOI] [PubMed] [Google Scholar]
- Lam E., Kano-Murakami Y., Gilmartin P., Niner B., Chua N. H. A metal-dependent DNA-binding protein interacts with a constitutive element of a light-responsive promoter. Plant Cell. 1990 Sep;2(9):857–866. doi: 10.1105/tpc.2.9.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Longo C. P., Longo G. P. The development of glyoxysomes in peanut cotyledons and maize scutella. Plant Physiol. 1970 Mar;45(3):249–254. doi: 10.1104/pp.45.3.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- López-Boado Y. S., Herrero P., Gascón S., Moreno F. Catabolite inactivation of isocitrate lyase from Saccharomyces cerevisiae. Arch Microbiol. 1987 Apr;147(3):231–234. doi: 10.1007/BF00463480. [DOI] [PubMed] [Google Scholar]
- Rolfe S. A., Tobin E. M. Deletion analysis of a phytochrome-regulated monocot rbcS promoter in a transient assay system. Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2683–2686. doi: 10.1073/pnas.88.7.2683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rua J., De Arriaga D., Busto F., Soler J. Effect of glucose on isocitrate lyase in Phycomyces blakesleeanus. J Bacteriol. 1989 Nov;171(11):6391–6393. doi: 10.1128/jb.171.11.6391-6393.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sandeman R. A., Hynes M. J. Isolation of the facA (acetyl-coenzyme A synthetase) and acuE (malate synthase) genes of Aspergillus nidulans. Mol Gen Genet. 1989 Jul;218(1):87–92. doi: 10.1007/BF00330569. [DOI] [PubMed] [Google Scholar]
- Turley R. B., Trelease R. N. Development and regulation of three glyoxysomal enzymes during cotton seed maturation and growth. Plant Mol Biol. 1990 Feb;14(2):137–146. doi: 10.1007/BF00018555. [DOI] [PubMed] [Google Scholar]
- Twell D., Yamaguchi J., Wing R. A., Ushiba J., McCormick S. Promoter analysis of genes that are coordinately expressed during pollen development reveals pollen-specific enhancer sequences and shared regulatory elements. Genes Dev. 1991 Mar;5(3):496–507. doi: 10.1101/gad.5.3.496. [DOI] [PubMed] [Google Scholar]
- Zhang J. Z., Gomez-Pedrozo M., Baden C. S., Harada J. J. Two classes of isocitrate lyase genes are expressed during late embryogeny and postgermination in Brassica napus L. Mol Gen Genet. 1993 Apr;238(1-2):177–184. doi: 10.1007/BF00279545. [DOI] [PubMed] [Google Scholar]
- Zhang J. Z., Laudencia-Chingcuanco D. L., Comai L., Li M., Harada J. J. Isocitrate lyase and malate synthase genes from Brassica napus L. are active in pollen. Plant Physiol. 1994 Mar;104(3):857–864. doi: 10.1104/pp.104.3.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Wet J. R., Wood K. V., DeLuca M., Helinski D. R., Subramani S. Firefly luciferase gene: structure and expression in mammalian cells. Mol Cell Biol. 1987 Feb;7(2):725–737. doi: 10.1128/mcb.7.2.725. [DOI] [PMC free article] [PubMed] [Google Scholar]