Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1995 Jul;7(7):907–919. doi: 10.1105/tpc.7.7.907

The Shikimate Pathway: Early Steps in the Biosynthesis of Aromatic Compounds.

KM Herrmann 1
PMCID: PMC160886  PMID: 12242393

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson K. S., Sammons R. D., Leo G. C., Sikorski J. A., Benesi A. J., Johnson K. A. Observation by 13C NMR of the EPSP synthase tetrahedral intermediate bound to the enzyme active site. Biochemistry. 1990 Feb 13;29(6):1460–1465. doi: 10.1021/bi00458a017. [DOI] [PubMed] [Google Scholar]
  2. Anton I. A., Coggins J. R. Sequencing and overexpression of the Escherichia coli aroE gene encoding shikimate dehydrogenase. Biochem J. 1988 Jan 15;249(2):319–326. doi: 10.1042/bj2490319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Archer E. K., Keegstra K. Current views on chloroplast protein import and hypotheses on the origin of the transport mechanism. J Bioenerg Biomembr. 1990 Dec;22(6):789–810. doi: 10.1007/BF00786931. [DOI] [PubMed] [Google Scholar]
  4. Bender S. L., Widlanski T., Knowles J. R. Dehydroquinate synthase: the use of substrate analogues to probe the early steps of the catalyzed reaction. Biochemistry. 1989 Sep 19;28(19):7560–7572. doi: 10.1021/bi00445a010. [DOI] [PubMed] [Google Scholar]
  5. Benfey P. N., Takatsuji H., Ren L., Shah D. M., Chua N. H. Sequence Requirements of the 5-Enolpyruvylshikimate-3-phosphate Synthase 5[prime]-Upstream Region for Tissue-Specific Expression in Flowers and Seedlings. Plant Cell. 1990 Sep;2(9):849–856. doi: 10.1105/tpc.2.9.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bentley R. The shikimate pathway--a metabolic tree with many branches. Crit Rev Biochem Mol Biol. 1990;25(5):307–384. doi: 10.3109/10409239009090615. [DOI] [PubMed] [Google Scholar]
  7. Boys C. W., Bury S. M., Sawyer L., Moore J. D., Charles I. G., Hawkins A. R., Deka R., Kleanthous C., Coggins J. R. Crystallization of a type I 3-dehydroquinase from Salmonella typhi. J Mol Biol. 1992 Sep 5;227(1):352–355. doi: 10.1016/0022-2836(92)90704-n. [DOI] [PubMed] [Google Scholar]
  8. Braus G. H. Aromatic amino acid biosynthesis in the yeast Saccharomyces cerevisiae: a model system for the regulation of a eukaryotic biosynthetic pathway. Microbiol Rev. 1991 Sep;55(3):349–370. doi: 10.1128/mr.55.3.349-370.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Case M. E., Giles N. H. Evidence for nonsense mutations in the arom gene cluster of Neurospora crassa. Genetics. 1968 Sep;60(1):49–58. doi: 10.1093/genetics/60.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Charles I. G., Keyte J. W., Brammar W. J., Smith M., Hawkins A. R. The isolation and nucleotide sequence of the complex AROM locus of Aspergillus nidulans. Nucleic Acids Res. 1986 Mar 11;14(5):2201–2213. doi: 10.1093/nar/14.5.2201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Christensen A. M., Schaefer J. Solid-state NMR determination of intra- and intermolecular 31P-13C distances for shikimate 3-phosphate and [1-13C]glyphosate bound to enolpyruvylshikimate-3-phosphate synthase. Biochemistry. 1993 Mar 23;32(11):2868–2873. doi: 10.1021/bi00062a018. [DOI] [PubMed] [Google Scholar]
  12. DeFeyter R. C., Davidson B. E., Pittard J. Nucleotide sequence of the transcription unit containing the aroL and aroM genes from Escherichia coli K-12. J Bacteriol. 1986 Jan;165(1):233–239. doi: 10.1128/jb.165.1.233-239.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. DeFeyter R. C., Pittard J. Genetic and molecular analysis of aroL, the gene for shikimate kinase II in Escherichia coli K-12. J Bacteriol. 1986 Jan;165(1):226–232. doi: 10.1128/jb.165.1.226-232.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Deka R. K., Anton I. A., Dunbar B., Coggins J. R. The characterisation of the shikimate pathway enzyme dehydroquinase from Pisum sativum. FEBS Lett. 1994 Aug 8;349(3):397–402. doi: 10.1016/0014-5793(94)00710-1. [DOI] [PubMed] [Google Scholar]
  15. Deka R. K., Kleanthous C., Coggins J. R. Identification of the essential histidine residue at the active site of Escherichia coli dehydroquinase. J Biol Chem. 1992 Nov 5;267(31):22237–22242. [PubMed] [Google Scholar]
  16. Della-Cioppa G., Bauer S. C., Klein B. K., Shah D. M., Fraley R. T., Kishore G. M. Translocation of the precursor of 5-enolpyruvylshikimate-3-phosphate synthase into chloroplasts of higher plants in vitro. Proc Natl Acad Sci U S A. 1986 Sep;83(18):6873–6877. doi: 10.1073/pnas.83.18.6873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Dixon R. A., Paiva N. L. Stress-Induced Phenylpropanoid Metabolism. Plant Cell. 1995 Jul;7(7):1085–1097. doi: 10.1105/tpc.7.7.1085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Duncan K., Edwards R. M., Coggins J. R. The pentafunctional arom enzyme of Saccharomyces cerevisiae is a mosaic of monofunctional domains. Biochem J. 1987 Sep 1;246(2):375–386. doi: 10.1042/bj2460375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Dyer W. E., Henstrand J. M., Handa A. K., Herrmann K. M. Wounding induces the first enzyme of the shikimate pathway in Solanaceae. Proc Natl Acad Sci U S A. 1989 Oct;86(19):7370–7373. doi: 10.1073/pnas.86.19.7370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Dyer W. E., Weaver L. M., Zhao J. M., Kuhn D. N., Weller S. C., Herrmann K. M. A cDNA encoding 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase from Solanum tuberosum L. J Biol Chem. 1990 Jan 25;265(3):1608–1614. [PubMed] [Google Scholar]
  21. Ely B., Pittard J. Aromatic amino acid biosynthesis: regulation of shikimate kinase in Escherichia coli K-12. J Bacteriol. 1979 Jun;138(3):933–943. doi: 10.1128/jb.138.3.933-943.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Fiedler E., Schultz G. Localization, purification, and characterization of shikimate oxidoreductase-dehydroquinate hydrolyase from stroma of spinach chloroplasts. Plant Physiol. 1985 Sep;79(1):212–218. doi: 10.1104/pp.79.1.212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Garner C. C., Herrmann K. M. Operator mutations of the Escherichia coli aroF gene. J Biol Chem. 1985 Mar 25;260(6):3820–3825. [PubMed] [Google Scholar]
  24. Garner C. C., Herrmann K. M. Structural analysis of 3-deoxy-D-arabino-heptulosonate 7-phosphate by 1H- and natural-abundance 13C-n.m.r. spectroscopy. Carbohydr Res. 1984 Sep 15;132(2):317–322. doi: 10.1016/0008-6215(84)85228-3. [DOI] [PubMed] [Google Scholar]
  25. Gasser C. S., Klee H. J. A Brassica napus gene encoding 5-enolpyruvylshikimate-3-phosphate synthase. Nucleic Acids Res. 1990 May 11;18(9):2821–2821. doi: 10.1093/nar/18.9.2821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Gasser C. S., Winter J. A., Hironaka C. M., Shah D. M. Structure, expression, and evolution of the 5-enolpyruvylshikimate-3-phosphate synthase genes of petunia and tomato. J Biol Chem. 1988 Mar 25;263(9):4280–4287. [PubMed] [Google Scholar]
  27. Gavel Y., von Heijne G. A conserved cleavage-site motif in chloroplast transit peptides. FEBS Lett. 1990 Feb 26;261(2):455–458. doi: 10.1016/0014-5793(90)80614-o. [DOI] [PubMed] [Google Scholar]
  28. Giles N. H., Case M. E., Baum J., Geever R., Huiet L., Patel V., Tyler B. Gene organization and regulation in the qa (quinic acid) gene cluster of Neurospora crassa. Microbiol Rev. 1985 Sep;49(3):338–358. doi: 10.1128/mr.49.3.338-358.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Gourley D. G., Coggins J. R., Isaacs N. W., Moore J. D., Charles I. G., Hawkins A. R. Crystallization of a type II dehydroquinase from Mycobacterium tuberculosis. J Mol Biol. 1994 Aug 19;241(3):488–491. doi: 10.1006/jmbi.1994.1524. [DOI] [PubMed] [Google Scholar]
  30. Grant S., Roberts C. F., Lamb H., Stout M., Hawkins A. R. Genetic regulation of the quinic acid utilization (QUT) gene cluster in Aspergillus nidulans. J Gen Microbiol. 1988 Feb;134(2):347–358. doi: 10.1099/00221287-134-2-347. [DOI] [PubMed] [Google Scholar]
  31. Gray M. W., Doolittle W. F. Has the endosymbiont hypothesis been proven? Microbiol Rev. 1982 Mar;46(1):1–42. doi: 10.1128/mr.46.1.1-42.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Gruys K. J., Marzabadi M. R., Pansegrau P. D., Sikorski J. A. Steady-state kinetic evaluation of the reverse reaction for Escherichia coli 5-enolpyruvoylshikimate-3-phosphate synthase. Arch Biochem Biophys. 1993 Aug 1;304(2):345–351. doi: 10.1006/abbi.1993.1360. [DOI] [PubMed] [Google Scholar]
  33. Görlach J., Beck A., Henstrand J. M., Handa A. K., Herrmann K. M., Schmid J., Amrhein N. Differential expression of tomato (Lycopersicon esculentum L.) genes encoding shikimate pathway isoenzymes. I. 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase. Plant Mol Biol. 1993 Nov;23(4):697–706. doi: 10.1007/BF00021525. [DOI] [PubMed] [Google Scholar]
  34. Görlach J., Raesecke H. R., Rentsch D., Regenass M., Roy P., Zala M., Keel C., Boller T., Amrhein N., Schmid J. Temporally distinct accumulation of transcripts encoding enzymes of the prechorismate pathway in elicitor-treated, cultured tomato cells. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3166–3170. doi: 10.1073/pnas.92.8.3166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Görlach J., Schmid J., Amrhein N. Abundance of transcripts specific for genes encoding enzymes of the prechorismate pathway in different organs of tomato (Lycopersicon esculentum L.) plants. Planta. 1994;193(2):216–223. doi: 10.1007/BF00192533. [DOI] [PubMed] [Google Scholar]
  36. Görlach J., Schmid J., Amrhein N. Differential expression of tomato (Lycopersicon esculentum L.) genes encoding shikimate pathway isoenzymes. II. Chorismate synthase. Plant Mol Biol. 1993 Nov;23(4):707–716. doi: 10.1007/BF00021526. [DOI] [PubMed] [Google Scholar]
  37. HANSON K. R., ROSE I. A. THE ABSOLUTE STEREOCHEMICAL COURSE OF CITRIC ACID BIOSYNTHESIS. Proc Natl Acad Sci U S A. 1963 Nov;50:981–988. doi: 10.1073/pnas.50.5.981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Hasan N., Nester E. W. Dehydroquinate synthase in Bacillus subtilis. An enzyme associated with chorismate synthase and flavin reductase. J Biol Chem. 1978 Jul 25;253(14):4999–5004. [PubMed] [Google Scholar]
  39. Hawkes T. R., Lewis T., Coggins J. R., Mousdale D. M., Lowe D. J., Thorneley R. N. Chorismate synthase. Pre-steady-state kinetics of phosphate release from 5-enolpyruvylshikimate 3-phosphate. Biochem J. 1990 Feb 1;265(3):899–902. doi: 10.1042/bj2650899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Hawkins A. R., Lamb H. K., Moore J. D., Roberts C. F. Genesis of eukaryotic transcriptional activator and repressor proteins by splitting a multidomain anabolic enzyme. Gene. 1993 Dec 22;136(1-2):49–54. doi: 10.1016/0378-1119(93)90446-a. [DOI] [PubMed] [Google Scholar]
  41. Heatwole V. M., Somerville R. L. Synergism between the Trp repressor and Tyr repressor in repression of the aroL promoter of Escherichia coli K-12. J Bacteriol. 1992 Jan;174(1):331–335. doi: 10.1128/jb.174.1.331-335.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Jensen R. A. Taxonomic implications of temperature dependence of the allosteric inhibition of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthetase in Bacillus. J Bacteriol. 1970 May;102(2):489–497. doi: 10.1128/jb.102.2.489-497.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Keith B., Dong X. N., Ausubel F. M., Fink G. R. Differential induction of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase genes in Arabidopsis thaliana by wounding and pathogenic attack. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8821–8825. doi: 10.1073/pnas.88.19.8821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Klee H. J., Muskopf Y. M., Gasser C. S. Cloning of an Arabidopsis thaliana gene encoding 5-enolpyruvylshikimate-3-phosphate synthase: sequence analysis and manipulation to obtain glyphosate-tolerant plants. Mol Gen Genet. 1987 Dec;210(3):437–442. doi: 10.1007/BF00327194. [DOI] [PubMed] [Google Scholar]
  45. Koshiba T. Purification of two forms of the associated 3-dehydroquinate hydro-lyase and shikimate:NADP+ oxidoreductase in Phaseolus mungo seedlings. Biochim Biophys Acta. 1978 Jan 12;522(1):10–18. doi: 10.1016/0005-2744(78)90317-0. [DOI] [PubMed] [Google Scholar]
  46. Leuschner C., Herrmann K. M., Schultz G. The Metabolism of Quinate in Pea Roots (Purification and Partial Characterization of a Quinate Hydrolyase). Plant Physiol. 1995 May;108(1):319–325. doi: 10.1104/pp.108.1.319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Maher E. A., Bate N. J., Ni W., Elkind Y., Dixon R. A., Lamb C. J. Increased disease susceptibility of transgenic tobacco plants with suppressed levels of preformed phenylpropanoid products. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7802–7806. doi: 10.1073/pnas.91.16.7802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. McCue K. F., Conn E. E. Induction of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase activity by fungal elicitor in cultures of Petroselinum crispum. Proc Natl Acad Sci U S A. 1989 Oct;86(19):7374–7377. doi: 10.1073/pnas.86.19.7374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Millar G., Coggins J. R. The complete amino acid sequence of 3-dehydroquinate synthase of Escherichia coli K12. FEBS Lett. 1986 May 5;200(1):11–17. doi: 10.1016/0014-5793(86)80501-4. [DOI] [PubMed] [Google Scholar]
  50. Millar G., Lewendon A., Hunter M. G., Coggins J. R. The cloning and expression of the aroL gene from Escherichia coli K12. Purification and complete amino acid sequence of shikimate kinase II, the aroL-gene product. Biochem J. 1986 Jul 15;237(2):427–437. doi: 10.1042/bj2370427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Minton N. P., Whitehead P. J., Atkinson T., Gilbert H. J. Nucleotide sequence of an Erwinia chrysanthemi gene encoding shikimate kinase. Nucleic Acids Res. 1989 Feb 25;17(4):1769–1769. doi: 10.1093/nar/17.4.1769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Muday G. K., Johnson D. I., Somerville R. L., Herrmann K. M. The tyrosine repressor negatively regulates aroH expression in Escherichia coli. J Bacteriol. 1991 Jun;173(12):3930–3932. doi: 10.1128/jb.173.12.3930-3932.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Nakanishi N., Yamamoto M. Analysis of the structure and transcription of the aro3 cluster gene in Schizosaccharomyces pombe. Mol Gen Genet. 1984;195(1-2):164–169. doi: 10.1007/BF00332740. [DOI] [PubMed] [Google Scholar]
  54. Pinto J. E., Dyer W. E., Weller S. C., Herrmann K. M. Glyphosate Induces 3-Deoxy-d-arabino-Heptulosonate 7-Phosphate Synthase in Potato (Solanum tuberosum L.) Cells Grown in Suspension Culture. Plant Physiol. 1988 Aug;87(4):891–893. doi: 10.1104/pp.87.4.891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Polley L. D. Purification and characterization of 3-dehydroquinate hydrolase and shikmate oxidoreductase. Evidence for a bifunctional enzyme. Biochim Biophys Acta. 1978 Sep 11;526(1):259–266. doi: 10.1016/0005-2744(78)90310-8. [DOI] [PubMed] [Google Scholar]
  56. Ranjeva R., Refeno G., Boudet A. M., Marmé D. Activation of plant quinate:NAD 3-oxidoreductase by Ca and calmodulin. Proc Natl Acad Sci U S A. 1983 Sep;80(17):5222–5224. doi: 10.1073/pnas.80.17.5222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Ream J. E., Steinrücken H. C., Porter C. A., Sikorski J. A. Purification and Properties of 5-Enolpyruvylshikimate-3-Phosphate Synthase from Dark-Grown Seedlings of Sorghum bicolor. Plant Physiol. 1988 May;87(1):232–238. doi: 10.1104/pp.87.1.232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Samach A., Hareven D., Gutfinger T., Ken-Dror S., Lifschitz E. Biosynthetic threonine deaminase gene of tomato: isolation, structure, and upregulation in floral organs. Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2678–2682. doi: 10.1073/pnas.88.7.2678. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Sammons R. D., Gruys K. J., Anderson K. S., Johnson K. A., Sikorski J. A. Reevaluating glyphosate as a transition-state inhibitor of EPSP synthase: identification of an EPSP synthase.EPSP.glyphosate ternary complex. Biochemistry. 1995 May 16;34(19):6433–6440. doi: 10.1021/bi00019a024. [DOI] [PubMed] [Google Scholar]
  60. Schaller A., Schmid J., Leibinger U., Amrhein N. Molecular cloning and analysis of a cDNA coding for chorismate synthase from the higher plant Corydalis sempervirens Pers. J Biol Chem. 1991 Nov 15;266(32):21434–21438. [PubMed] [Google Scholar]
  61. Schaller A., Windhofer V., Amrhein N. Purification of chorismate synthase from a cell culture of the higher plant Corydalis sempervirens Pers. Arch Biochem Biophys. 1990 Nov 1;282(2):437–442. doi: 10.1016/0003-9861(90)90141-k. [DOI] [PubMed] [Google Scholar]
  62. Schaller A., van Afferden M., Windhofer V., Bülow S., Abel G., Schmid J., Amrhein N. Purification and Characterization of Chorismate Synthase from Euglena gracilis: Comparison with Chorismate Synthases of Plant and Microbial Origin. Plant Physiol. 1991 Dec;97(4):1271–1279. doi: 10.1104/pp.97.4.1271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Schmid J., Schaller A., Leibinger U., Boll W., Amrhein N. The in-vitro synthesized tomato shikimate kinase precursor is enzymatically active and is imported and processed to the mature enzyme by chloroplasts. Plant J. 1992 May;2(3):375–383. [PubMed] [Google Scholar]
  64. Schmidt C. L., Danneel H. J., Schultz G., Buchanan B. B. Shikimate kinase from spinach chloroplasts : purification, characterization, and regulatory function in aromatic amino Acid biosynthesis. Plant Physiol. 1990 Jun;93(2):758–766. doi: 10.1104/pp.93.2.758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Schulze-Siebert D., Heineke D., Scharf H., Schultz G. Pyruvate-Derived Amino Acids in Spinach Chloroplasts : Synthesis and Regulation during Photosynthetic Carbon Metabolism. Plant Physiol. 1984 Oct;76(2):465–471. doi: 10.1104/pp.76.2.465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Shuttleworth W. A., Evans J. N. Site-directed mutagenesis and NMR studies of histidine-385 mutants of 5-enolpyruvylshikimate-3-phosphate synthase. Biochemistry. 1994 Jun 14;33(23):7062–7068. doi: 10.1021/bi00189a007. [DOI] [PubMed] [Google Scholar]
  67. Singh B. K., Shaner D. L. Biosynthesis of Branched Chain Amino Acids: From Test Tube to Field. Plant Cell. 1995 Jul;7(7):935–944. doi: 10.1105/tpc.7.7.935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Smart C. C., Johänning D., Müller G., Amrhein N. Selective overproduction of 5-enol-pyruvylshikimic acid 3-phosphate synthase in a plant cell culture which tolerates high doses of the herbicide glyphosate. J Biol Chem. 1985 Dec 25;260(30):16338–16346. [PubMed] [Google Scholar]
  69. Stalker D. M., Hiatt W. R., Comai L. A single amino acid substitution in the enzyme 5-enolpyruvylshikimate-3-phosphate synthase confers resistance to the herbicide glyphosate. J Biol Chem. 1985 Apr 25;260(8):4724–4728. [PubMed] [Google Scholar]
  70. Stallings W. C., Abdel-Meguid S. S., Lim L. W., Shieh H. S., Dayringer H. E., Leimgruber N. K., Stegeman R. A., Anderson K. S., Sikorski J. A., Padgette S. R. Structure and topological symmetry of the glyphosate target 5-enolpyruvylshikimate-3-phosphate synthase: a distinctive protein fold. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):5046–5050. doi: 10.1073/pnas.88.11.5046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Steinrücken H. C., Amrhein N. The herbicide glyphosate is a potent inhibitor of 5-enolpyruvyl-shikimic acid-3-phosphate synthase. Biochem Biophys Res Commun. 1980 Jun 30;94(4):1207–1212. doi: 10.1016/0006-291x(80)90547-1. [DOI] [PubMed] [Google Scholar]
  72. Stephens C. M., Bauerle R. Analysis of the metal requirement of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Escherichia coli. J Biol Chem. 1991 Nov 5;266(31):20810–20817. [PubMed] [Google Scholar]
  73. Suzich J. A., Dean J. F., Herrmann K. M. 3-Deoxy-d-arabino-Heptulosonate 7-Phosphate Synthase from Carrot Root (Daucus carota) Is a Hysteretic Enzyme. Plant Physiol. 1985 Nov;79(3):765–770. doi: 10.1104/pp.79.3.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Thuleau P., Graziana A., Ranjeva R., Schroeder J. I. Solubilized proteins from carrot (Daucus carota L.) membranes bind calcium channel blockers and form calcium-permeable ion channels. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):765–769. doi: 10.1073/pnas.90.2.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Thuleau P., Ward J. M., Ranjeva R., Schroeder J. I. Voltage-dependent calcium-permeable channels in the plasma membrane of a higher plant cell. EMBO J. 1994 Jul 1;13(13):2970–2975. doi: 10.1002/j.1460-2075.1994.tb06595.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Wang Y., Herrmann K. M., Weller S. C., Goldsbrough P. B. Cloning and Nucleotide Sequence of a Complementary DNA Encoding 3-Deoxy-d-arabino-Heptulosonate 7-Phosphate Synthase from Tobacco. Plant Physiol. 1991 Oct;97(2):847–848. doi: 10.1104/pp.97.2.847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Welch G. R., Cole K. W., Gaertner F. H. Chorismate synthase of Neurospora crassa: a flavoprotein. Arch Biochem Biophys. 1974 Dec;165(2):505–518. doi: 10.1016/0003-9861(74)90276-8. [DOI] [PubMed] [Google Scholar]
  78. Whipp M. J., Pittard A. J. A reassessment of the relationship between aroK- and aroL-encoded shikimate kinase enzymes of Escherichia coli. J Bacteriol. 1995 Mar;177(6):1627–1629. doi: 10.1128/jb.177.6.1627-1629.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Wistow G. Lens crystallins: gene recruitment and evolutionary dynamism. Trends Biochem Sci. 1993 Aug;18(8):301–306. doi: 10.1016/0968-0004(93)90041-k. [DOI] [PubMed] [Google Scholar]
  80. Zhao J., Herrmann K. M. Cloning and Sequencing of a Second cDNA Encoding 3-Deoxy-d-arabino-Heptulosonate 7-Phosphate Synthase from Solanum tuberosum L. Plant Physiol. 1992 Oct;100(2):1075–1076. doi: 10.1104/pp.100.2.1075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. van Kleef M. A., Duine J. A. Bacterial NAD(P)-independent quinate dehydrogenase is a quinoprotein. Arch Microbiol. 1988 May;150(1):32–36. doi: 10.1007/BF00409714. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES