Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Apr;110(4):1097–1107. doi: 10.1104/pp.110.4.1097

The Competence of Maize Shoot Meristems for Integrative Transformation and Inherited Expression of Transgenes.

H Zhong 1, B Sun 1, D Warkentin 1, S Zhang 1, R Wu 1, T Wu 1, M B Sticklen 1
PMCID: PMC160889  PMID: 12226244

Abstract

We have developed a novel and reproducible system for recovery of fertile transgenic maize (Zea mays L.) plants. The transformation was performed using microprojectile bombardment of cultured shoot apices of maize with a plasmid carrying two linked genes, the Streptomyces hygroscopicus phosphinothricin acetyltransferase gene (bar) and the potato proteinase inhibitor II gene, either alone or in combination with another plasmid containing the 5[prime] region of the rice actin 1 gene fused to the Escherichia coli [beta]-glucuronidase gene (gus). Bombarded shoot apices were subsequently multiplied and selected under 3 to 5 mg/L glufosinate ammonium. Co-transformation frequency was 100% (146/146) for linked genes and 80% (41/51) for unlinked genes. Co-expression frequency of the bar and gus genes was 57% (29/51). The co-integration, co-inheritance, and co-expression of bar, the potato proteinase inhibitor II gene, and gus in transgenic R0, R1, and R2 plants were confirmed. Localized expression of the actin 1-GUS protein in the R0 and R1 plants was extensively analyzed by histochemical and fluorometric assays.

Full Text

The Full Text of this article is available as a PDF (3.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bevan M., Barnes W. M., Chilton M. D. Structure and transcription of the nopaline synthase gene region of T-DNA. Nucleic Acids Res. 1983 Jan 25;11(2):369–385. doi: 10.1093/nar/11.2.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. D'Halluin K., Bonne E., Bossut M., De Beuckeleer M., Leemans J. Transgenic maize plants by tissue electroporation. Plant Cell. 1992 Dec;4(12):1495–1505. doi: 10.1105/tpc.4.12.1495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gordon-Kamm W. J., Spencer T. M., Mangano M. L., Adams T. R., Daines R. J., Start W. G., O'Brien J. V., Chambers S. A., Adams W. R., Jr, Willetts N. G. Transformation of Maize Cells and Regeneration of Fertile Transgenic Plants. Plant Cell. 1990 Jul;2(7):603–618. doi: 10.1105/tpc.2.7.603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Keil M., Sanchez-Serrano J., Schell J., Willmitzer L. Primary structure of a proteinase inhibitor II gene from potato (Solanum tuberosum). Nucleic Acids Res. 1986 Jul 25;14(14):5641–5650. doi: 10.1093/nar/14.14.5641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Laursen C. M., Krzyzek R. A., Flick C. E., Anderson P. C., Spencer T. M. Production of fertile transgenic maize by electroporation of suspension culture cells. Plant Mol Biol. 1994 Jan;24(1):51–61. doi: 10.1007/BF00040573. [DOI] [PubMed] [Google Scholar]
  6. Medford J. I. Vegetative Apical Meristems. Plant Cell. 1992 Sep;4(9):1029–1039. doi: 10.1105/tpc.4.9.1029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Rhodes C. A., Pierce D. A., Mettler I. J., Mascarenhas D., Detmer J. J. Genetically transformed maize plants from protoplasts. Science. 1988 Apr 8;240(4849):204–207. doi: 10.1126/science.2832947. [DOI] [PubMed] [Google Scholar]
  8. Zhang W., McElroy D., Wu R. Analysis of rice Act1 5' region activity in transgenic rice plants. Plant Cell. 1991 Nov;3(11):1155–1165. doi: 10.1105/tpc.3.11.1155. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES