Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Apr;110(4):1123–1133. doi: 10.1104/pp.110.4.1123

Signaling in Soybean Phenylpropanoid Responses (Dissection of Primary, Secondary, and Conditioning Effects of Light, Wounding, and Elicitor Treatments).

T L Graham 1, M Y Graham 1
PMCID: PMC160894  PMID: 12226246

Abstract

The spatial and temporal deployment of plant defense responses involves a complex interplay of signal events, often resulting in superimposition of signaling processes. We have employed a minimal-wound protocol to clearly separate and characterize the specific contributions of light, wounding, and a wall glucan elicitor preparation (PWG) from Phytophthora sojae (Kauf. and Gerde.) to the regulation of phenylpropanoid defense responses in soybean (Glycine max L. [Merr.]) cotyledon tissues. The assay also allowed us to clearly reconstitute responses to combinations of these primary signals and to examine the effects of other pathogenesis-related molecules on the responses in a defined manner. Light specifically triggers accumulation of malonylglucosyl conjugates of the 5-hydroxy-isoflavone, genistein, which is normally found in epidermal cells. PWG selectively induces accumulation of conjugates of the 5-deoxy-isoflavone daidzein, the first committed precursor of the phytoalexin glyceollin. Wounding initiates phenolic polymer deposition, a process greatly potentiated by PWG and light. Whereas glutathione selectively enhances light induction of genistein conjugates, methyl jasmonate enhances both light and PWG-induced isoflavone conjugate accumulations. Wound exudate fully activates the cell's capacity (competency) for the phenolic polymer and glyceollin responses to PWG, whereas glutathione partially restores competency, favoring coumestrol and phenolic polymer responses to PWG. Abscisic acid inhibits all induced phenylpropanoid responses.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ayers A. R., Ebel J., Finelli F., Berger N., Albersheim P. Host-Pathogen Interactions: IX. Quantitative Assays of Elicitor Activity and Characterization of the Elicitor Present in the Extracellular Medium of Cultures of Phytophthora megasperma var. sojae. Plant Physiol. 1976 May;57(5):751–759. doi: 10.1104/pp.57.5.751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cheong J. J., Hahn M. G. A specific, high-affinity binding site for the hepta-beta-glucoside elicitor exists in soybean membranes. Plant Cell. 1991 Feb;3(2):137–147. doi: 10.1105/tpc.3.2.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Choudhary A. D., Lamb C. J., Dixon R. A. Stress Responses in Alfalfa (Medicago sativa L.): VI. Differential Responsiveness of Chalcone Synthase Induction to Fungal Elicitor or Glutathione in Electroporated Protoplasts. Plant Physiol. 1990 Dec;94(4):1802–1807. doi: 10.1104/pp.94.4.1802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cline K., Albersheim P. Host-Pathogen Interactions : XVII. HYDROLYSIS OF BIOLOGICALLY ACTIVE FUNGAL GLUCANS BY ENZYMES ISOLATED FROM SOYBEAN CELLS. Plant Physiol. 1981 Jul;68(1):221–228. doi: 10.1104/pp.68.1.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cottle W., Kolattukudy P. E. Abscisic Acid stimulation of suberization : induction of enzymes and deposition of polymeric components and associated waxes in tissue cultures of potato tuber. Plant Physiol. 1982 Sep;70(3):775–780. doi: 10.1104/pp.70.3.775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Creelman R. A., Tierney M. L., Mullet J. E. Jasmonic acid/methyl jasmonate accumulate in wounded soybean hypocotyls and modulate wound gene expression. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):4938–4941. doi: 10.1073/pnas.89.11.4938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Graham M. Y., Graham T. L. Rapid Accumulation of Anionic Peroxidases and Phenolic Polymers in Soybean Cotyledon Tissues following Treatment with Phytophthora megasperma f. sp. Glycinea Wall Glucan. Plant Physiol. 1991 Dec;97(4):1445–1455. doi: 10.1104/pp.97.4.1445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Graham T. L. A rapid, high resolution high performance liquid chromatography profiling procedure for plant and microbial aromatic secondary metabolites. Plant Physiol. 1991 Feb;95(2):584–593. doi: 10.1104/pp.95.2.584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gundlach H., Müller M. J., Kutchan T. M., Zenk M. H. Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2389–2393. doi: 10.1073/pnas.89.6.2389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Keen N. T., Yoshikawa M. beta-1,3-Endoglucanase from Soybean Releases Elicitor-Active Carbohydrates from Fungus Cell Walls. Plant Physiol. 1983 Mar;71(3):460–465. doi: 10.1104/pp.71.3.460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Pēna-Cortés H., Sánchez-Serrano J. J., Mertens R., Willmitzer L., Prat S. Abscisic acid is involved in the wound-induced expression of the proteinase inhibitor II gene in potato and tomato. Proc Natl Acad Sci U S A. 1989 Dec;86(24):9851–9855. doi: 10.1073/pnas.86.24.9851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Reinbothe S., Mollenhauer B., Reinbothe C. JIPs and RIPs: the regulation of plant gene expression by jasmonates in response to environmental cues and pathogens. Plant Cell. 1994 Sep;6(9):1197–1209. doi: 10.1105/tpc.6.9.1197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Roberts E., Kolattukudy P. E. Molecular cloning, nucleotide sequence, and abscisic acid induction of a suberization-associated highly anionic peroxidase. Mol Gen Genet. 1989 Jun;217(2-3):223–232. doi: 10.1007/BF02464885. [DOI] [PubMed] [Google Scholar]
  14. Sharp J. K., McNeil M., Albersheim P. The primary structures of one elicitor-active and seven elicitor-inactive hexa(beta-D-glucopyranosyl)-D-glucitols isolated from the mycelial walls of Phytophthora megasperma f. sp. glycinea. J Biol Chem. 1984 Sep 25;259(18):11321–11336. [PubMed] [Google Scholar]
  15. Ward E. W., Cahill D. M., Bhattacharyya M. K. Abscisic Acid Suppression of Phenylalanine Ammonia-Lyase Activity and mRNA, and Resistance of Soybeans to Phytophthora megasperma f.sp. glycinea. Plant Physiol. 1989 Sep;91(1):23–27. doi: 10.1104/pp.91.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Wingate V. P., Lawton M. A., Lamb C. J. Glutathione causes a massive and selective induction of plant defense genes. Plant Physiol. 1988 May;87(1):206–210. doi: 10.1104/pp.87.1.206. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES