Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1995 Jul;7(7):971–985. doi: 10.1105/tpc.7.7.971

Starch biosynthesis.

C Martin 1, A M Smith 1
PMCID: PMC160895  PMID: 7640529

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BUTTROSE M. S. The influence of environment on the shell structure of starch granules. J Cell Biol. 1962 Aug;14:159–167. doi: 10.1083/jcb.14.2.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baba T., Kimura K., Mizuno K., Etoh H., Ishida Y., Shida O., Arai Y. Sequence conservation of the catalytic regions of amylolytic enzymes in maize branching enzyme-I. Biochem Biophys Res Commun. 1991 Nov 27;181(1):87–94. doi: 10.1016/s0006-291x(05)81385-3. [DOI] [PubMed] [Google Scholar]
  3. Baba T., Nishihara M., Mizuno K., Kawasaki T., Shimada H., Kobayashi E., Ohnishi S., Tanaka K., Arai Y. Identification, cDNA cloning, and gene expression of soluble starch synthase in rice (Oryza sativa L.) immature seeds. Plant Physiol. 1993 Oct;103(2):565–573. doi: 10.1104/pp.103.2.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bhattacharyya M. K., Smith A. M., Ellis T. H., Hedley C., Martin C. The wrinkled-seed character of pea described by Mendel is caused by a transposon-like insertion in a gene encoding starch-branching enzyme. Cell. 1990 Jan 12;60(1):115–122. doi: 10.1016/0092-8674(90)90721-p. [DOI] [PubMed] [Google Scholar]
  5. Bhattacharyya M., Martin C., Smith A. The importance of starch biosynthesis in the wrinkled seed shape character of peas studied by Mendel. Plant Mol Biol. 1993 Jun;22(3):525–531. doi: 10.1007/BF00015981. [DOI] [PubMed] [Google Scholar]
  6. Bhave M. R., Lawrence S., Barton C., Hannah L. C. Identification and molecular characterization of shrunken-2 cDNA clones of maize. Plant Cell. 1990 Jun;2(6):581–588. doi: 10.1105/tpc.2.6.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Boyer C. D., Preiss J. Multiple forms of starch branching enzyme of maize: evidence for independent genetic control. Biochem Biophys Res Commun. 1978 Jan 13;80(1):169–175. doi: 10.1016/0006-291x(78)91119-1. [DOI] [PubMed] [Google Scholar]
  8. Burton R. A., Bewley J. D., Smith A. M., Bhattacharyya M. K., Tatge H., Ring S., Bull V., Hamilton W. D., Martin C. Starch branching enzymes belonging to distinct enzyme families are differentially expressed during pea embryo development. Plant J. 1995 Jan;7(1):3–15. doi: 10.1046/j.1365-313x.1995.07010003.x. [DOI] [PubMed] [Google Scholar]
  9. Copeland L., Preiss J. Purification of Spinach Leaf ADPglucose Pyrophosphorylase. Plant Physiol. 1981 Nov;68(5):996–1001. doi: 10.1104/pp.68.5.996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Delmer D. P., Amor Y. Cellulose biosynthesis. Plant Cell. 1995 Jul;7(7):987–1000. doi: 10.1105/tpc.7.7.987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Delrue B., Fontaine T., Routier F., Decq A., Wieruszeski J. M., Van Den Koornhuyse N., Maddelein M. L., Fournet B., Ball S. Waxy Chlamydomonas reinhardtii: monocellular algal mutants defective in amylose biosynthesis and granule-bound starch synthase activity accumulate a structurally modified amylopectin. J Bacteriol. 1992 Jun;174(11):3612–3620. doi: 10.1128/jb.174.11.3612-3620.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dickinson D. B., Preiss J. Presence of ADP-Glucose Pyrophosphorylase in Shrunken-2 and Brittle-2 Mutants of Maize Endosperm. Plant Physiol. 1969 Jul;44(7):1058–1062. doi: 10.1104/pp.44.7.1058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dry I., Smith A., Edwards A., Bhattacharyya M., Dunn P., Martin C. Characterization of cDNAs encoding two isoforms of granule-bound starch synthase which show differential expression in developing storage organs of pea and potato. Plant J. 1992 Mar;2(2):193–202. [PubMed] [Google Scholar]
  15. Fisher D. K., Boyer C. D., Hannah L. C. Starch branching enzyme II from maize endosperm. Plant Physiol. 1993 Jul;102(3):1045–1046. doi: 10.1104/pp.102.3.1045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Giroux M. J., Boyer C., Feix G., Hannah L. C. Coordinated Transcriptional Regulation of Storage Product Genes in the Maize Endosperm. Plant Physiol. 1994 Oct;106(2):713–722. doi: 10.1104/pp.106.2.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hauxwell A. J., Corke F. M., Hedley C. L., Wang T. L. Storage protein gene expression is localised to regions lacking mitotic activity in developing pea embryos. An analysis of seed development in Pisum sativum XIV. Development. 1990 Sep;110(1):283–289. doi: 10.1242/dev.110.1.283. [DOI] [PubMed] [Google Scholar]
  18. Hylton C., Smith A. M. The rb Mutation of Peas Causes Structural and Regulatory Changes in ADP Glucose Pyrophosphorylase from Developing Embryos. Plant Physiol. 1992 Aug;99(4):1626–1634. doi: 10.1104/pp.99.4.1626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Iglesias A. A., Barry G. F., Meyer C., Bloksberg L., Nakata P. A., Greene T., Laughlin M. J., Okita T. W., Kishore G. M., Preiss J. Expression of the potato tuber ADP-glucose pyrophosphorylase in Escherichia coli. J Biol Chem. 1993 Jan 15;268(2):1081–1086. [PubMed] [Google Scholar]
  20. Iglesias A. A., Kakefuda G., Preiss J. Regulatory and Structural Properties of the Cyanobacterial ADPglucose Pyrophosphorylases. Plant Physiol. 1991 Nov;97(3):1187–1195. doi: 10.1104/pp.97.3.1187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jespersen H. M., MacGregor E. A., Henrissat B., Sierks M. R., Svensson B. Starch- and glycogen-debranching and branching enzymes: prediction of structural features of the catalytic (beta/alpha)8-barrel domain and evolutionary relationship to other amylolytic enzymes. J Protein Chem. 1993 Dec;12(6):791–805. doi: 10.1007/BF01024938. [DOI] [PubMed] [Google Scholar]
  22. Kacser H., Burns J. A. The control of flux. Symp Soc Exp Biol. 1973;27:65–104. [PubMed] [Google Scholar]
  23. Kossmann J., Visser R. G., Müller-Röber B., Willmitzer L., Sonnewald U. Cloning and expression analysis of a potato cDNA that encodes branching enzyme: evidence for co-expression of starch biosynthetic genes. Mol Gen Genet. 1991 Nov;230(1-2):39–44. doi: 10.1007/BF00290648. [DOI] [PubMed] [Google Scholar]
  24. Kram A. M., Oostergetel G. T., Van Bruggen EFJ. Localization of Branching Enzyme in Potato Tuber Cells with the Use of Immunoelectron Microscopy. Plant Physiol. 1993 Jan;101(1):237–243. doi: 10.1104/pp.101.1.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Krishnan H. B., Reeves C. D., Okita T. W. ADPglucose Pyrophosphorylase Is Encoded by Different mRNA Transcripts in Leaf and Endosperm of Cereals. Plant Physiol. 1986 Jun;81(2):642–645. doi: 10.1104/pp.81.2.642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kuipers AGJ., Jacobsen E., Visser RGF. Formation and Deposition of Amylose in the Potato Tuber Starch Granule Are Affected by the Reduction of Granule-Bound Starch Synthase Gene Expression. Plant Cell. 1994 Jan;6(1):43–52. doi: 10.1105/tpc.6.1.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lin T. P., Caspar T., Somerville C. R., Preiss J. A Starch Deficient Mutant of Arabidopsis thaliana with Low ADPglucose Pyrophosphorylase Activity Lacks One of the Two Subunits of the Enzyme. Plant Physiol. 1988 Dec;88(4):1175–1181. doi: 10.1104/pp.88.4.1175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Macdonald F. D., Preiss J. Partial purification and characterization of granule-bound starch synthases from normal and waxy maize. Plant Physiol. 1985 Aug;78(4):849–852. doi: 10.1104/pp.78.4.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Morell M., Bloom M., Preiss J. Affinity labeling of the allosteric activator site(s) of spinach leaf ADP-glucose pyrophosphorylase. J Biol Chem. 1988 Jan 15;263(2):633–637. [PubMed] [Google Scholar]
  30. Moreno S., Cardini C. E., Tandecarz J. S. alpha-Glucan synthesis on a protein primer, uridine diphosphoglucose: protein transglucosylase I. Separation from starch synthetase and phosphorylase and a study of its properties. Eur J Biochem. 1986 Jun 16;157(3):539–545. doi: 10.1111/j.1432-1033.1986.tb09700.x. [DOI] [PubMed] [Google Scholar]
  31. Müller-Röber B. T., Kossmann J., Hannah L. C., Willmitzer L., Sonnewald U. One of two different ADP-glucose pyrophosphorylase genes from potato responds strongly to elevated levels of sucrose. Mol Gen Genet. 1990 Oct;224(1):136–146. doi: 10.1007/BF00259460. [DOI] [PubMed] [Google Scholar]
  32. Müller-Röber B., La Cognata U., Sonnewald U., Willmitzer L. A truncated version of an ADP-glucose pyrophosphorylase promoter from potato specifies guard cell-selective expression in transgenic plants. Plant Cell. 1994 May;6(5):601–612. [PMC free article] [PubMed] [Google Scholar]
  33. Müller-Röber B., Sonnewald U., Willmitzer L. Inhibition of the ADP-glucose pyrophosphorylase in transgenic potatoes leads to sugar-storing tubers and influences tuber formation and expression of tuber storage protein genes. EMBO J. 1992 Apr;11(4):1229–1238. doi: 10.1002/j.1460-2075.1992.tb05167.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. NELSON O. E., RINES H. W. The enzymatic deficiency in the waxy mutant of maize. Biochem Biophys Res Commun. 1962 Oct 31;9:297–300. doi: 10.1016/0006-291x(62)90043-8. [DOI] [PubMed] [Google Scholar]
  35. Nelson O. E., Chourey P. S., Chang M. T. Nucleoside Diphosphate Sugar-Starch Glucosyl Transferase Activity of wx Starch Granules. Plant Physiol. 1978 Sep;62(3):383–386. doi: 10.1104/pp.62.3.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Ngernprasirtsiri J., Takabe T., Akazawa T. Immunochemical Analysis Shows That an ATP/ADP-Translocator Is Associated with the Inner-Envelope Membranes of Amyloplasts from Acer pseudoplatanus L. Plant Physiol. 1989 Apr;89(4):1024–1027. doi: 10.1104/pp.89.4.1024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Ni B, Arnold K, Chmely F, Cooper MD, Eckhause M, Guss PP, Hoffman CM, Hogan GE, Hughes VW, Kane JR. Search for spontaneous conversion of muonium to antimuonium. Phys Rev D Part Fields. 1993 Sep 1;48(5):1976–1989. doi: 10.1103/physrevd.48.1976. [DOI] [PubMed] [Google Scholar]
  38. Okita T. W. Is there an alternative pathway for starch synthesis? Plant Physiol. 1992 Oct;100(2):560–564. doi: 10.1104/pp.100.2.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Plaxton W. C., Preiss J. Purification and Properties of Nonproteolytic Degraded ADPglucose Pyrophosphorylase from Maize Endosperm. Plant Physiol. 1987 Jan;83(1):105–112. doi: 10.1104/pp.83.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Poulsen P., Kreiberg J. D. Starch branching enzyme cDNA from Solanum tuberosum. Plant Physiol. 1993 Jul;102(3):1053–1054. doi: 10.1104/pp.102.3.1053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Preiss J., Ball K., Smith-White B., Iglesias A., Kakefuda G., Li L. Starch biosynthesis and its regulation. Biochem Soc Trans. 1991 Aug;19(3):539–547. doi: 10.1042/bst0190539. [DOI] [PubMed] [Google Scholar]
  42. Prioul J. L., Jeannette E., Reyss A., Grégory N., Giroux M., Hannah L. C., Causse M. Expression of ADP-glucose pyrophosphorylase in maize (Zea mays L.) grain and source leaf during grain filling. Plant Physiol. 1994 Jan;104(1):179–187. doi: 10.1104/pp.104.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Salehuzzaman S. N., Jacobsen E., Visser R. G. Cloning, partial sequencing and expression of a cDNA coding for branching enzyme in cassava. Plant Mol Biol. 1992 Dec;20(5):809–819. doi: 10.1007/BF00027152. [DOI] [PubMed] [Google Scholar]
  44. Schaeper R. J., Das K. K., Li Z., Basu S. In vitro biosynthesis of GbOse4Cer (globoside) and GM2 ganglioside by the (1-->3) and (1-->4)-N-acetyl beta-D-galactosaminyltransferases from embryonic chicken brain. Solubilization, purification, and characterization of the transferases. Carbohydr Res. 1992 Dec 15;236:227–244. doi: 10.1016/0008-6215(92)85018-u. [DOI] [PubMed] [Google Scholar]
  45. Schunemann D., Borchert S., Flugge U. I., Heldt H. W. ADP/ATP Translocator from Pea Root Plastids (Comparison with Translocators from Spinach Chloroplasts and Pea Leaf Mitochondria). Plant Physiol. 1993 Sep;103(1):131–137. doi: 10.1104/pp.103.1.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Shewmaker C. K., Stalker D. M. Modifying starch biosynthesis with transgenes in potatoes. Plant Physiol. 1992 Nov;100(3):1083–1086. doi: 10.1104/pp.100.3.1083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Sivak M. N., Wagner M., Preiss J. Biochemical Evidence for the Role of the Waxy Protein from Pea (Pisum sativum L.) as a Granule-Bound Starch Synthase. Plant Physiol. 1993 Dec;103(4):1355–1359. doi: 10.1104/pp.103.4.1355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Smith-White B. J., Preiss J. Comparison of proteins of ADP-glucose pyrophosphorylase from diverse sources. J Mol Evol. 1992 May;34(5):449–464. doi: 10.1007/BF00162999. [DOI] [PubMed] [Google Scholar]
  49. Stark D. M., Timmerman K. P., Barry G. F., Preiss J., Kishore G. M. Regulation of the Amount of Starch in Plant Tissues by ADP Glucose Pyrophosphorylase. Science. 1992 Oct 9;258(5080):287–292. doi: 10.1126/science.258.5080.287. [DOI] [PubMed] [Google Scholar]
  50. Stinard P. S., Robertson D. S., Schnable P. S. Genetic Isolation, Cloning, and Analysis of a Mutator-Induced, Dominant Antimorph of the Maize amylose extender1 Locus. Plant Cell. 1993 Nov;5(11):1555–1566. doi: 10.1105/tpc.5.11.1555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Tsai C. Y., Nelson O. E. Starch-deficient maize mutant lacking adenosine dephosphate glucose pyrophosphorylase activity. Science. 1966 Jan 21;151(3708):341–343. doi: 10.1126/science.151.3708.341. [DOI] [PubMed] [Google Scholar]
  52. Tsai C. Y. The function of the waxy locus in starch synthesis in maize endosperm. Biochem Genet. 1974 Feb;11(2):83–96. doi: 10.1007/BF00485766. [DOI] [PubMed] [Google Scholar]
  53. Turner S. R., Barratt D. H., Casey R. The effect of different alleles at the r locus on the synthesis of seed storage proteins in Pisum sativum. Plant Mol Biol. 1990 May;14(5):793–803. doi: 10.1007/BF00016512. [DOI] [PubMed] [Google Scholar]
  54. Villand P., Aalen R., Olsen O. A., Lüthi E., Lönneborg A., Kleczkowski L. A. PCR amplification and sequences of cDNA clones for the small and large subunits of ADP-glucose pyrophosphorylase from barley tissues. Plant Mol Biol. 1992 Jun;19(3):381–389. doi: 10.1007/BF00023385. [DOI] [PubMed] [Google Scholar]
  55. Villand P., Olsen O. A., Kilian A., Kleczkowski L. A. ADP-Glucose Pyrophosphorylase Large Subunit cDNA from Barley Endosperm. Plant Physiol. 1992 Nov;100(3):1617–1618. doi: 10.1104/pp.100.3.1617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Villand P., Olsen O. A., Kleczkowski L. A. Molecular characterization of multiple cDNA clones for ADP-glucose pyrophosphorylase from Arabidopsis thaliana. Plant Mol Biol. 1993 Dec;23(6):1279–1284. doi: 10.1007/BF00042361. [DOI] [PubMed] [Google Scholar]
  57. Weber H., Heim U., Borisjuk L., Wobus U. Cell-type specific, coordinate expression of two ADP-glucose pyrophosphorylase genes in relation to starch biosynthesis during seed development of Vicia faba L. Planta. 1995;195(3):352–361. doi: 10.1007/BF00202592. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES