Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Apr;110(4):1159–1165. doi: 10.1104/pp.110.4.1159

Molecular basis of alpha-methyltryptophan resistance in amt-1, a mutant of Arabidopsis thaliana with altered tryptophan metabolism.

J A Kreps 1, T Ponappa 1, W Dong 1, C D Town 1
PMCID: PMC160900  PMID: 8934623

Abstract

A mutant of Arabidopsis thaliana, amt-1, was previously selected for resistance to growth inhibition by the tryptophan analog alpha-methyltryptophan. This mutant had elevated tryptophan levels and exhibited higher anthranilate synthase (AS) activity that showed increased resistance to feedback inhibition by tryptophan. In this study, extracts of the mutant callus exhibited higher AS activity than wild-type callus when assayed with either glutamine or ammonium sulfate as amino donor, thus suggesting that elevated AS activity in the mutant was due to an alteration in the alpha subunit of the enzyme. The mutant also showed cross-resistance to 5-methylanthranilate and 6-methylanthranilate and mapped to chromosome V at or close to ASA1 (a gene encoding the AS alpha subunit). ASA1 mRNA and protein levels were similar in mutant and wild-type leaf extracts. Levels of ASA1 mRNA and protein were also similar in callus cultures of mutant and wild type, although the levels in callus were higher than in leaf tissue. Sequencing of the ASA1 gene from amt-1 revealed a G to A transition relative to the wild-type gene that would result in the substitution of an asparagine residue in place of aspartic acid at position 341 in the predicted amino acid sequence of the ASA1 protein. The mutant allele in strain amt-1 has been renamed trp5-1.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Band L., Shimotsu H., Henner D. J. Nucleotide sequence of the Bacillus subtilis trpE and trpD genes. Gene. 1984 Jan;27(1):55–65. doi: 10.1016/0378-1119(84)90238-5. [DOI] [PubMed] [Google Scholar]
  2. Bohlmann J., DeLuca V., Eilert U., Martin W. Purification and cDNA cloning of anthranilate synthase from Ruta graveolens: modes of expression and properties of native and recombinant enzymes. Plant J. 1995 Mar;7(3):491–501. doi: 10.1046/j.1365-313x.1995.7030491.x. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Caligiuri M. G., Bauerle R. Identification of amino acid residues involved in feedback regulation of the anthranilate synthase complex from Salmonella typhimurium. Evidence for an amino-terminal regulatory site. J Biol Chem. 1991 May 5;266(13):8328–8335. [PubMed] [Google Scholar]
  5. Goncharoff P., Nichols B. P. Nucleotide sequence of Escherichia coli pabB indicates a common evolutionary origin of p-aminobenzoate synthetase and anthranilate synthetase. J Bacteriol. 1984 Jul;159(1):57–62. doi: 10.1128/jb.159.1.57-62.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kreps J. A., Town C. D. Isolation and Characterization of a Mutant of Arabidopsis thaliana Resistant to alpha-Methyltryptophan. Plant Physiol. 1992 May;99(1):269–275. doi: 10.1104/pp.99.1.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  8. Last R. L., Fink G. R. Tryptophan-Requiring Mutants of the Plant Arabidopsis thaliana. Science. 1988 Apr 15;240(4850):305–310. doi: 10.1126/science.240.4850.305. [DOI] [PubMed] [Google Scholar]
  9. Li J., Last R. L. The Arabidopsis thaliana trp5 mutant has a feedback-resistant anthranilate synthase and elevated soluble tryptophan. Plant Physiol. 1996 Jan;110(1):51–59. doi: 10.1104/pp.110.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Niyogi K. K., Fink G. R. Two anthranilate synthase genes in Arabidopsis: defense-related regulation of the tryptophan pathway. Plant Cell. 1992 Jun;4(6):721–733. doi: 10.1105/tpc.4.6.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Niyogi K. K., Last R. L., Fink G. R., Keith B. Suppressors of trp1 fluorescence identify a new arabidopsis gene, TRP4, encoding the anthranilate synthase beta subunit. Plant Cell. 1993 Sep;5(9):1011–1027. doi: 10.1105/tpc.5.9.1011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Poulsen C., Bongaerts R. J., Verpoorte R. Purification and characterization of anthranilate synthase from Catharanthus roseus. Eur J Biochem. 1993 Mar 1;212(2):431–440. doi: 10.1111/j.1432-1033.1993.tb17679.x. [DOI] [PubMed] [Google Scholar]
  13. Ranch J. P., Rick S., Brotherton J. E., Widholm J. M. Expression of 5-Methyltryptophan Resistance in Plants Regenerated from Resistant Cell Lines of Datura innoxia. Plant Physiol. 1983 Jan;71(1):136–140. doi: 10.1104/pp.71.1.136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rochester D. E., Winer J. A., Shah D. M. The structure and expression of maize genes encoding the major heat shock protein, hsp70. EMBO J. 1986 Mar;5(3):451–458. doi: 10.1002/j.1460-2075.1986.tb04233.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Stasinopoulos T. C., Hangarter R. P. Preventing photochemistry in culture media by long-pass light filters alters growth of cultured tissues. Plant Physiol. 1990 Aug;93(4):1365–1369. doi: 10.1104/pp.93.4.1365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Suiter K. A., Wendel J. F., Case J. S. LINKAGE-1: a PASCAL computer program for the detection and analysis of genetic linkage. J Hered. 1983 May-Jun;74(3):203–204. doi: 10.1093/oxfordjournals.jhered.a109766. [DOI] [PubMed] [Google Scholar]
  17. Zhao J., Last R. L. Immunological characterization and chloroplast localization of the tryptophan biosynthetic enzymes of the flowering plant Arabidopsis thaliana. J Biol Chem. 1995 Mar 17;270(11):6081–6087. doi: 10.1074/jbc.270.11.6081. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES