Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Apr;110(4):1223–1230. doi: 10.1104/pp.110.4.1223

Differential expression of two hemA mRNAs encoding glutamyl-tRNA reductase proteins in greening cucumber seedlings.

R Tanaka 1, K Yoshida 1, T Nakayashiki 1, T Masuda 1, H Tsuji 1, H Inokuchi 1, A Tanaka 1
PMCID: PMC160912  PMID: 8934625

Abstract

The first committed step of porphyrin synthesis in higher plants is the reduction of glutamyl-tRNA to glutamate 1-semialdehyde. This reaction is catalyzed by glutamyl-tRNA reductase, which is encoded by hemA genes. Two hemA cDNA clones (hemA1 and hemA2) were obtained from cucumber (Cucumis sativus) cotyledons by the PCR and cDNA library screening. They showed significant homology with published hemA sequences. Southern blot analysis of cucumber genomic DNA revealed that these genes are located at different loci and that there is another gene similar to the hemA genes. Accumulation of hemA1 mRNA was detected primarily in cotyledons and hypocotyls of greening cucumber seedlings, whereas that of hemA2 mRNA was detected in all tissues examined. Illumination of cucumber seedlings increased markedly the accumulation of hemA1 mRNA, but it did not induce remarkable changes in that of hemA2 mRNA. These findings suggest that hemA1 mRNA was accumulated in response to the demand of Chl synthesis in photosynthesizing tissues, whereas hemA2 mRNA was expressed in response to the demand of the synthesis of porphyrins other than chlorophylls.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avissar Y. J., Beale S. I. Cloning and expression of a structural gene from Chlorobium vibrioforme that complements the hemA mutation in Escherichia coli. J Bacteriol. 1990 Mar;172(3):1656–1659. doi: 10.1128/jb.172.3.1656-1659.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chou P. Y., Fasman G. D. Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol. 1978;47:45–148. doi: 10.1002/9780470122921.ch2. [DOI] [PubMed] [Google Scholar]
  3. Elliott T. Cloning, genetic characterization, and nucleotide sequence of the hemA-prfA operon of Salmonella typhimurium. J Bacteriol. 1989 Jul;171(7):3948–3960. doi: 10.1128/jb.171.7.3948-3960.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Frustaci J. M., Sangwan I., O'Brian M. R. gsa1 is a universal tetrapyrrole synthesis gene in soybean and is regulated by a GAGA element. J Biol Chem. 1995 Mar 31;270(13):7387–7393. doi: 10.1074/jbc.270.13.7387. [DOI] [PubMed] [Google Scholar]
  5. Huang D. D., Wang W. Y. Chlorophyll biosynthesis in Chlamydomonas starts with the formation of glutamyl-tRNA. J Biol Chem. 1986 Oct 15;261(29):13451–13455. [PubMed] [Google Scholar]
  6. Ilag L. L., Kumar A. M., Söll D. Light regulation of chlorophyll biosynthesis at the level of 5-aminolevulinate formation in Arabidopsis. Plant Cell. 1994 Feb;6(2):265–275. doi: 10.1105/tpc.6.2.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Inoue H., Nojima H., Okayama H. High efficiency transformation of Escherichia coli with plasmids. Gene. 1990 Nov 30;96(1):23–28. doi: 10.1016/0378-1119(90)90336-p. [DOI] [PubMed] [Google Scholar]
  8. Kannangara C. G., Gough S. P., Bruyant P., Hoober J. K., Kahn A., von Wettstein D. tRNA(Glu) as a cofactor in delta-aminolevulinate biosynthesis: steps that regulate chlorophyll synthesis. Trends Biochem Sci. 1988 Apr;13(4):139–143. doi: 10.1016/0968-0004(88)90071-0. [DOI] [PubMed] [Google Scholar]
  9. Majumdar D., Avissar Y. J., Wyche J. H., Beale S. I. Structure and expression of the Chlorobium vibrioforme hemA gene. Arch Microbiol. 1991;156(4):281–289. doi: 10.1007/BF00262999. [DOI] [PubMed] [Google Scholar]
  10. Nakai K., Kanehisa M. A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics. 1992 Dec;14(4):897–911. doi: 10.1016/S0888-7543(05)80111-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nakayashiki T., Nishimura K., Tanaka R., Inokuchi H. Partial inhibition of protein synthesis accelerates the synthesis of porphyrin in heme-deficient mutants of Escherichia coli. Mol Gen Genet. 1995 Nov 15;249(2):139–146. doi: 10.1007/BF00290359. [DOI] [PubMed] [Google Scholar]
  12. Petricek M., Rutberg L., Schröder I., Hederstedt L. Cloning and characterization of the hemA region of the Bacillus subtilis chromosome. J Bacteriol. 1990 May;172(5):2250–2258. doi: 10.1128/jb.172.5.2250-2258.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Pontoppidan B., Kannangara C. G. Purification and partial characterisation of barley glutamyl-tRNA(Glu) reductase, the enzyme that directs glutamate to chlorophyll biosynthesis. Eur J Biochem. 1994 Oct 15;225(2):529–537. doi: 10.1111/j.1432-1033.1994.00529.x. [DOI] [PubMed] [Google Scholar]
  14. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Smith A. G. Subcellular localization of two porphyrin-synthesis enzymes in Pisum sativum (pea) and Arum (cuckoo-pint) species. Biochem J. 1988 Jan 15;249(2):423–428. doi: 10.1042/bj2490423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Verkamp E., Chelm B. K. Isolation, nucleotide sequence, and preliminary characterization of the Escherichia coli K-12 hemA gene. J Bacteriol. 1989 Sep;171(9):4728–4735. doi: 10.1128/jb.171.9.4728-4735.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wierenga R. K., Terpstra P., Hol W. G. Prediction of the occurrence of the ADP-binding beta alpha beta-fold in proteins, using an amino acid sequence fingerprint. J Mol Biol. 1986 Jan 5;187(1):101–107. doi: 10.1016/0022-2836(86)90409-2. [DOI] [PubMed] [Google Scholar]
  19. Yoshida K., Chen R. M., Tanaka A., Teramoto H., Tanaka R., Timko M. P., Tsuji H. Correlated Changes in the Activity, Amount of Protein, and Abundance of Transcript of NADPH:Protochlorophyllide Oxidoreductase and Chlorophyll Accumulation during Greening of Cucumber Cotyledons. Plant Physiol. 1995 Sep;109(1):231–238. doi: 10.1104/pp.109.1.231. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES