Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1995 Jul;7(7):1085–1097. doi: 10.1105/tpc.7.7.1085

Stress-Induced Phenylpropanoid Metabolism.

RA Dixon 1, NL Paiva 1
PMCID: PMC160915  PMID: 12242399

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angermeyer M. C., Kühn L., Osterwald P. Birthday and date of death. J Epidemiol Community Health. 1987 Jun;41(2):121–126. doi: 10.1136/jech.41.2.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Appert C., Logemann E., Hahlbrock K., Schmid J., Amrhein N. Structural and catalytic properties of the four phenylalanine ammonia-lyase isoenzymes from parsley (Petroselinum crispum Nym.). Eur J Biochem. 1994 Oct 1;225(1):491–499. doi: 10.1111/j.1432-1033.1994.00491.x. [DOI] [PubMed] [Google Scholar]
  3. Bernards M. A., Lewis N. G. Alkyl ferulates in wound healing potato tubers. Phytochemistry. 1992 Oct;31(10):3409–3412. doi: 10.1016/0031-9422(92)83695-u. [DOI] [PubMed] [Google Scholar]
  4. Bernards M. A., Lopez M. L., Zajicek J., Lewis N. G. Hydroxycinnamic acid-derived polymers constitute the polyaromatic domain of suberin. J Biol Chem. 1995 Mar 31;270(13):7382–7386. doi: 10.1074/jbc.270.13.7382. [DOI] [PubMed] [Google Scholar]
  5. Chapple C. C., Vogt T., Ellis B. E., Somerville C. R. An Arabidopsis mutant defective in the general phenylpropanoid pathway. Plant Cell. 1992 Nov;4(11):1413–1424. doi: 10.1105/tpc.4.11.1413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chen Z., Silva H., Klessig D. F. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science. 1993 Dec 17;262(5141):1883–1886. doi: 10.1126/science.8266079. [DOI] [PubMed] [Google Scholar]
  7. Delaney T. P., Uknes S., Vernooij B., Friedrich L., Weymann K., Negrotto D., Gaffney T., Gut-Rella M., Kessmann H., Ward E., Ryals J. A central role of salicylic Acid in plant disease resistance. Science. 1994 Nov 18;266(5188):1247–1250. doi: 10.1126/science.266.5188.1247. [DOI] [PubMed] [Google Scholar]
  8. Dixon R. A., Harrison M. J. Activation, structure, and organization of genes involved in microbial defense in plants. Adv Genet. 1990;28:165–234. doi: 10.1016/s0065-2660(08)60527-1. [DOI] [PubMed] [Google Scholar]
  9. Drews G. N., Beals T. P., Bui A. Q., Goldberg R. B. Regional and cell-specific gene expression patterns during petal development. Plant Cell. 1992 Nov;4(11):1383–1404. doi: 10.1105/tpc.4.11.1383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dwivedi U. N., Campbell W. H., Yu J., Datla R. S., Bugos R. C., Chiang V. L., Podila G. K. Modification of lignin biosynthesis in transgenic Nicotiana through expression of an antisense O-methyltransferase gene from Populus. Plant Mol Biol. 1994 Oct;26(1):61–71. doi: 10.1007/BF00039520. [DOI] [PubMed] [Google Scholar]
  11. Fahrendorf T., Dixon R. A. Stress responses in alfalfa (Medicago sativa L.). XVIII: Molecular cloning and expression of the elicitor-inducible cinnamic acid 4-hydroxylase cytochrome P450. Arch Biochem Biophys. 1993 Sep;305(2):509–515. doi: 10.1006/abbi.1993.1454. [DOI] [PubMed] [Google Scholar]
  12. Fedoroff N. V., Furtek D. B., Nelson O. E. Cloning of the bronze locus in maize by a simple and generalizable procedure using the transposable controlling element Activator (Ac). Proc Natl Acad Sci U S A. 1984 Jun;81(12):3825–3829. doi: 10.1073/pnas.81.12.3825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fields S., Song O. A novel genetic system to detect protein-protein interactions. Nature. 1989 Jul 20;340(6230):245–246. doi: 10.1038/340245a0. [DOI] [PubMed] [Google Scholar]
  14. Graham T. L. Flavonoid and isoflavonoid distribution in developing soybean seedling tissues and in seed and root exudates. Plant Physiol. 1991 Feb;95(2):594–603. doi: 10.1104/pp.95.2.594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Guo L., Dixon R. A., Paiva N. L. Conversion of vestitone to medicarpin in alfalfa (Medicago sativa L.) is catalyzed by two independent enzymes. Identification, purification, and characterization of vestitone reductase and 7,2'-dihydroxy-4'-methoxyisoflavanol dehydratase. J Biol Chem. 1994 Sep 2;269(35):22372–22378. [PubMed] [Google Scholar]
  16. Hahlbrock K., Scheel D., Logemann E., Nürnberger T., Parniske M., Reinold S., Sacks W. R., Schmelzer E. Oligopeptide elicitor-mediated defense gene activation in cultured parsley cells. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4150–4157. doi: 10.1073/pnas.92.10.4150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hain R., Reif H. J., Krause E., Langebartels R., Kindl H., Vornam B., Wiese W., Schmelzer E., Schreier P. H., Stöcker R. H. Disease resistance results from foreign phytoalexin expression in a novel plant. Nature. 1993 Jan 14;361(6408):153–156. doi: 10.1038/361153a0. [DOI] [PubMed] [Google Scholar]
  18. Herrmann K. M. The Shikimate Pathway: Early Steps in the Biosynthesis of Aromatic Compounds. Plant Cell. 1995 Jul;7(7):907–919. doi: 10.1105/tpc.7.7.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Holton T. A., Cornish E. C. Genetics and Biochemistry of Anthocyanin Biosynthesis. Plant Cell. 1995 Jul;7(7):1071–1083. doi: 10.1105/tpc.7.7.1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hrazdina G., Wagner G. J. Metabolic pathways as enzyme complexes: evidence for the synthesis of phenylpropanoids and flavonoids on membrane associated enzyme complexes. Arch Biochem Biophys. 1985 Feb 15;237(1):88–100. doi: 10.1016/0003-9861(85)90257-7. [DOI] [PubMed] [Google Scholar]
  21. Kneusel R. E., Matern U., Nicolay K. Formation of trans-caffeoyl-CoA from trans-4-coumaroyl-CoA by Zn2+-dependent enzymes in cultured plant cells and its activation by an elicitor-induced pH shift. Arch Biochem Biophys. 1989 Mar;269(2):455–462. doi: 10.1016/0003-9861(89)90129-x. [DOI] [PubMed] [Google Scholar]
  22. Kochs G., Grisebach H. Enzymic synthesis of isoflavones. Eur J Biochem. 1986 Mar 3;155(2):311–318. doi: 10.1111/j.1432-1033.1986.tb09492.x. [DOI] [PubMed] [Google Scholar]
  23. Lam E., Benfey P. N., Gilmartin P. M., Fang R. X., Chua N. H. Site-specific mutations alter in vitro factor binding and change promoter expression pattern in transgenic plants. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7890–7894. doi: 10.1073/pnas.86.20.7890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lawton M. A., Lamb C. J. Transcriptional activation of plant defense genes by fungal elicitor, wounding, and infection. Mol Cell Biol. 1987 Jan;7(1):335–341. doi: 10.1128/mcb.7.1.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Leon J., Yalpani N., Raskin I., Lawton M. A. Induction of Benzoic Acid 2-Hydroxylase in Virus-Inoculated Tobacco. Plant Physiol. 1993 Oct;103(2):323–328. doi: 10.1104/pp.103.2.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Li J., Ou-Lee T. M., Raba R., Amundson R. G., Last R. L. Arabidopsis Flavonoid Mutants Are Hypersensitive to UV-B Irradiation. Plant Cell. 1993 Feb;5(2):171–179. doi: 10.1105/tpc.5.2.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Loake G. J., Faktor O., Lamb C. J., Dixon R. A. Combination of H-box [CCTACC(N)7CT] and G-box (CACGTG) cis elements is necessary for feed-forward stimulation of a chalcone synthase promoter by the phenylpropanoid-pathway intermediate p-coumaric acid. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9230–9234. doi: 10.1073/pnas.89.19.9230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Maher E. A., Bate N. J., Ni W., Elkind Y., Dixon R. A., Lamb C. J. Increased disease susceptibility of transgenic tobacco plants with suppressed levels of preformed phenylpropanoid products. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7802–7806. doi: 10.1073/pnas.91.16.7802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Maloney A. P., VanEtten H. D. A gene from the fungal plant pathogen Nectria haematococca that encodes the phytoalexin-detoxifying enzyme pisatin demethylase defines a new cytochrome P450 family. Mol Gen Genet. 1994 Jun 3;243(5):506–514. doi: 10.1007/BF00284198. [DOI] [PubMed] [Google Scholar]
  30. Mavandad M., Edwards R., Liang X., Lamb C. J., Dixon R. A. Effects of trans-Cinnamic Acid on Expression of the Bean Phenylalanine Ammonia-Lyase Gene Family. Plant Physiol. 1990 Oct;94(2):671–680. doi: 10.1104/pp.94.2.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Maxwell C. A., Harrison M. J., Dixon R. A. Molecular characterization and expression of alfalfa isoliquiritigenin 2'-O-methyltransferase, an enzyme specifically involved in the biosynthesis of an inducer of Rhizobium meliloti nodulation genes. Plant J. 1993 Dec;4(6):971–981. doi: 10.1046/j.1365-313x.1993.04060971.x. [DOI] [PubMed] [Google Scholar]
  32. Meijer A. H., Souer E., Verpoorte R., Hoge J. H. Isolation of cytochrome P-450 cDNA clones from the higher plant Catharanthus roseus by a PCR strategy. Plant Mol Biol. 1993 May;22(2):379–383. doi: 10.1007/BF00014944. [DOI] [PubMed] [Google Scholar]
  33. Mo Y., Nagel C., Taylor L. P. Biochemical complementation of chalcone synthase mutants defines a role for flavonols in functional pollen. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):7213–7217. doi: 10.1073/pnas.89.15.7213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Newman T., de Bruijn F. J., Green P., Keegstra K., Kende H., McIntosh L., Ohlrogge J., Raikhel N., Somerville S., Thomashow M. Genes galore: a summary of methods for accessing results from large-scale partial sequencing of anonymous Arabidopsis cDNA clones. Plant Physiol. 1994 Dec;106(4):1241–1255. doi: 10.1104/pp.106.4.1241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Oommen A., Dixon R. A., Paiva N. L. The elicitor-inducible alfalfa isoflavone reductase promoter confers different patterns of developmental expression in homologous and heterologous transgenic plants. Plant Cell. 1994 Dec;6(12):1789–1803. doi: 10.1105/tpc.6.12.1789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Orr J. D., Edwards R., Dixon R. A. Stress Responses in Alfalfa (Medicago sativa L.) (XIV. Changes in the Levels of Phenylpropanoid Pathway Intermediates in Relation to Regulation of L-Phenylalanine Ammonia-Lyase in Elicitor-Treated Cell-Suspension Cultures). Plant Physiol. 1993 Mar;101(3):847–856. doi: 10.1104/pp.101.3.847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Paiva N. L., Sun Y., Dixon R. A., VanEtten H. D., Hrazdina G. Molecular cloning of isoflavone reductase from pea (Pisum sativum L.): evidence for a 3R-isoflavanone intermediate in (+)-pisatin biosynthesis. Arch Biochem Biophys. 1994 Aug 1;312(2):501–510. doi: 10.1006/abbi.1994.1338. [DOI] [PubMed] [Google Scholar]
  38. Pierrel M. A., Batard Y., Kazmaier M., Mignotte-Vieux C., Durst F., Werck-Reichhart D. Catalytic properties of the plant cytochrome P450 CYP73 expressed in yeast. Substrate specificity of a cinnamate hydroxylase. Eur J Biochem. 1994 Sep 15;224(3):835–844. doi: 10.1111/j.1432-1033.1994.00835.x. [DOI] [PubMed] [Google Scholar]
  39. Plant W. T. Longitudinal changes in intolerance and authoritarianism for subjects differing in amount of college education over four years. Genet Psychol Monogr. 1965 Nov;72(2):247–287. [PubMed] [Google Scholar]
  40. Qin X. F., Holuigue L., Horvath D. M., Chua N. H. Immediate early transcription activation by salicylic acid via the cauliflower mosaic virus as-1 element. Plant Cell. 1994 Jun;6(6):863–874. doi: 10.1105/tpc.6.6.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Rasmussen J. B., Hammerschmidt R., Zook M. N. Systemic Induction of Salicylic Acid Accumulation in Cucumber after Inoculation with Pseudomonas syringae pv syringae. Plant Physiol. 1991 Dec;97(4):1342–1347. doi: 10.1104/pp.97.4.1342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Ryals J., Uknes S., Ward E. Systemic Acquired Resistance. Plant Physiol. 1994 Apr;104(4):1109–1112. doi: 10.1104/pp.104.4.1109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Schmelzer E., Jahnen W., Hahlbrock K. In situ localization of light-induced chalcone synthase mRNA, chalcone synthase, and flavonoid end products in epidermal cells of parsley leaves. Proc Natl Acad Sci U S A. 1988 May;85(9):2989–2993. doi: 10.1073/pnas.85.9.2989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Schmelzer E., Kruger-Lebus S., Hahlbrock K. Temporal and Spatial Patterns of Gene Expression around Sites of Attempted Fungal Infection in Parsley Leaves. Plant Cell. 1989 Oct;1(10):993–1001. doi: 10.1105/tpc.1.10.993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Vernooij B., Friedrich L., Morse A., Reist R., Kolditz-Jawhar R., Ward E., Uknes S., Kessmann H., Ryals J. Salicylic Acid Is Not the Translocated Signal Responsible for Inducing Systemic Acquired Resistance but Is Required in Signal Transduction. Plant Cell. 1994 Jul;6(7):959–965. doi: 10.1105/tpc.6.7.959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Vogt T., Pollak P., Tarlyn N., Taylor L. P. Pollination- or Wound-Induced Kaempferol Accumulation in Petunia Stigmas Enhances Seed Production. Plant Cell. 1994 Jan;6(1):11–23. doi: 10.1105/tpc.6.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Welle R., Grisebach H. Phytoalexin synthesis in soybean cells: elicitor induction of reductase involved in biosynthesis of 6'-deoxychalcone. Arch Biochem Biophys. 1989 Jul;272(1):97–102. doi: 10.1016/0003-9861(89)90199-9. [DOI] [PubMed] [Google Scholar]
  48. Welle R., Schröder J. Expression cloning in Escherichia coli and preparative isolation of the reductase coacting with chalcone synthase during the key step in the biosynthesis of soybean phytoalexins. Arch Biochem Biophys. 1992 Mar;293(2):377–381. doi: 10.1016/0003-9861(92)90409-p. [DOI] [PubMed] [Google Scholar]
  49. Yalpani N., Leon J., Lawton M. A., Raskin I. Pathway of Salicylic Acid Biosynthesis in Healthy and Virus-Inoculated Tobacco. Plant Physiol. 1993 Oct;103(2):315–321. doi: 10.1104/pp.103.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Yu L. M., Lamb C. J., Dixon R. A. Purification and biochemical characterization of proteins which bind to the H-box cis-element implicated in transcriptional activation of plant defense genes. Plant J. 1993 Jun;3(6):805–816. doi: 10.1111/j.1365-313x.1993.00805.x. [DOI] [PubMed] [Google Scholar]
  51. da Costa e Silva O., Klein L., Schmelzer E., Trezzini G. F., Hahlbrock K. BPF-1, a pathogen-induced DNA-binding protein involved in the plant defense response. Plant J. 1993 Jul;4(1):125–135. doi: 10.1046/j.1365-313x.1993.04010125.x. [DOI] [PubMed] [Google Scholar]
  52. van der Meer I. M., Stam M. E., van Tunen A. J., Mol J. N., Stuitje A. R. Antisense inhibition of flavonoid biosynthesis in petunia anthers results in male sterility. Plant Cell. 1992 Mar;4(3):253–262. doi: 10.1105/tpc.4.3.253. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES