Abstract
High rates of light-dependent fatty acid synthesis from acetate were measured in isolated chloroplasts that were permeabilized to varying extents by resuspension in hypotonic reaction medium. The reactions in hypotonic medium unsupplemented with cofactors were linear with time and were directly proportional to chlorophyll concentration, suggesting that the enzymes and cofactors of fatty acid synthesis remained tightly integrated and thylakoid associated within disrupted chloroplasts. Permeabilized chloroplasts expanded to at least twice the volume of intact chloroplasts, lost about 50% of their stromal proteins in the medium, and metabolized exogenous nucleotides. However, neither acetyl-coenzyme A (CoA) nor malonyl-CoA inhibited fatty acid synthesis from acetate; nor were [1-14C]acetyl-CoA and [14C]malonyl-CoA significantly incorporated into fatty acids. Fatty acid synthesis from acetate was independent of added cofactors but was totally light dependent. Changes in the products of fatty acid synthesis were consistent with the loss of endogenous glycerol-3-phosphate from permeabilized chloroplasts. However, in appropriately supplemented medium, the products of acetate incorporation by spinach (Spinacia oleracea) chloroplasts were similar when reactions were carried out in either isotonic or hypotonic medium. Taken together, the results of this study suggest that the enzymes of fatty acid synthesis with chloroplasts are organized into a multienzyme assembly that channels acetate into long-chain fatty acids, glycerides, and CoA esters.
Full Text
The Full Text of this article is available as a PDF (973.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bagnara A. S., Finch L. R. Quantitative extraction and estimation of intracellular nucleoside triphosphates of Escherichia coli. Anal Biochem. 1972 Jan;45(1):24–34. doi: 10.1016/0003-2697(72)90004-8. [DOI] [PubMed] [Google Scholar]
- Cahoon E. B., Shanklin J., Ohlrogge J. B. Expression of a coriander desaturase results in petroselinic acid production in transgenic tobacco. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11184–11188. doi: 10.1073/pnas.89.23.11184. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Caughey I., Kekwick R. G. The characteristics of some components of the fatty acid synthetase system in the plastids from the mesocarp of avocado (Persea americana) fruit. Eur J Biochem. 1982 Apr;123(3):553–561. doi: 10.1111/j.1432-1033.1982.tb06568.x. [DOI] [PubMed] [Google Scholar]
- Cerović Z. G., Plesnicar M. An improved procedure for the isolation of intact chloroplasts of high photosynthetic capacity. Biochem J. 1984 Oct 15;223(2):543–545. doi: 10.1042/bj2230543. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cockburn W., Baldry C. W., Walker D. A. Some effects of inorganic phosphate on O2 evolution by isolated chloroplasts. Biochim Biophys Acta. 1967;143(3):614–624. doi: 10.1016/0005-2728(67)90067-9. [DOI] [PubMed] [Google Scholar]
- Gontero B., Cárdenas M. L., Ricard J. A functional five-enzyme complex of chloroplasts involved in the Calvin cycle. Eur J Biochem. 1988 Apr 15;173(2):437–443. doi: 10.1111/j.1432-1033.1988.tb14018.x. [DOI] [PubMed] [Google Scholar]
- Heineke D., Riens B., Grosse H., Hoferichter P., Peter U., Flügge U. I., Heldt H. W. Redox Transfer across the Inner Chloroplast Envelope Membrane. Plant Physiol. 1991 Apr;95(4):1131–1137. doi: 10.1104/pp.95.4.1131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobson B. S., Jaworski J. G., Stumpf P. K. Fat Metabolism in Higher Plants: LXII. Stearl-acyl Carrier Protein Desaturase from Spinach Chloroplasts. Plant Physiol. 1974 Oct;54(4):484–486. doi: 10.1104/pp.54.4.484. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mohan S. B., Kekwick R. G. Acetyl-coenzyme A carboxylase from avocado (Persea americana) plastids and spinach (Spinacia oleracea) chloroplasts. Biochem J. 1980 Jun 1;187(3):667–676. doi: 10.1042/bj1870667. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murakami S., Strotmann H. Adenylate kinase bound to the envelope membranes of spinach chloroplasts. Arch Biochem Biophys. 1978 Jan 15;185(1):30–38. doi: 10.1016/0003-9861(78)90140-6. [DOI] [PubMed] [Google Scholar]
- Ovádi J., Srere P. A. Channel your energies. Trends Biochem Sci. 1992 Nov;17(11):445–447. doi: 10.1016/0968-0004(92)90485-r. [DOI] [PubMed] [Google Scholar]
- Post-Beittenmiller D., Roughan G., Ohlrogge J. B. Regulation of plant Fatty Acid biosynthesis : analysis of acyl-coenzyme a and acyl-acyl carrier protein substrate pools in spinach and pea chloroplasts. Plant Physiol. 1992 Oct;100(2):923–930. doi: 10.1104/pp.100.2.923. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Post-Beittenmiller M. A., Schmid K. M., Ohlrogge J. B. Expression of holo and apo forms of spinach acyl carrier protein-I in leaves of transgenic tobacco plants. Plant Cell. 1989 Sep;1(9):889–899. doi: 10.1105/tpc.1.9.889. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reeves S. G., Hall D. O. The stoichiometry (ATP-2e- ratio) of non-cyclic photophosphorylation in isolated spinach chloroplasts. Biochim Biophys Acta. 1973 Jul 26;314(1):66–78. doi: 10.1016/0005-2728(73)90064-9. [DOI] [PubMed] [Google Scholar]
- Roughan G. A semi-preparative enzymic synthesis of malonyl-CoA from [14C]acetate and 14CO2: labelling in the 1, 2 or 3 position. Biochem J. 1994 Jun 1;300(Pt 2):355–358. doi: 10.1042/bj3000355. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roughan P. G., Holland R., Slack C. R. On the control of long-chain-fatty acid synthesis in isolated intact spinach (Spinacia oleracea) chloroplasts. Biochem J. 1979 Nov 15;184(2):193–202. doi: 10.1042/bj1840193. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roughan P. G., Ohlrogge J. B. On the assay of acetyl-CoA synthetase activity in chloroplasts and leaf extracts. Anal Biochem. 1994 Jan;216(1):77–82. doi: 10.1006/abio.1994.1010. [DOI] [PubMed] [Google Scholar]
- Sasaki Y., Hakamada K., Suama Y., Nagano Y., Furusawa I., Matsuno R. Chloroplast-encoded protein as a subunit of acetyl-CoA carboxylase in pea plant. J Biol Chem. 1993 Nov 25;268(33):25118–25123. [PubMed] [Google Scholar]
- Shimakata T., Stumpf P. K. Fatty Acid Synthetase of Spinacia oleracea Leaves. Plant Physiol. 1982 Jun;69(6):1257–1262. doi: 10.1104/pp.69.6.1257. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Srere P. A. Complexes of sequential metabolic enzymes. Annu Rev Biochem. 1987;56:89–124. doi: 10.1146/annurev.bi.56.070187.000513. [DOI] [PubMed] [Google Scholar]
- Stumpf P. K. Fatty acid synthesis by spinach chloroplasts. Methods Enzymol. 1972;24:394–397. doi: 10.1016/0076-6879(72)24085-x. [DOI] [PubMed] [Google Scholar]
- Voelker T. A., Worrell A. C., Anderson L., Bleibaum J., Fan C., Hawkins D. J., Radke S. E., Davies H. M. Fatty acid biosynthesis redirected to medium chains in transgenic oilseed plants. Science. 1992 Jul 3;257(5066):72–74. doi: 10.1126/science.1621095. [DOI] [PubMed] [Google Scholar]
- Weaire P. J., Kekwick R. G. The fractionation of the fatty acid synthetase activities of avocado mesocarp plastids. Biochem J. 1975 Feb;146(2):439–445. doi: 10.1042/bj1460439. [DOI] [PMC free article] [PubMed] [Google Scholar]
- West K. R., Wiskich J. T. Evidence for two phosphorylation sites associated with the electron transport chain of chloroplasts. Biochim Biophys Acta. 1973 Jan 18;292(1):197–205. doi: 10.1016/0005-2728(73)90264-8. [DOI] [PubMed] [Google Scholar]
- Wolter F. P., Schmidt R., Heinz E. Chilling sensitivity of Arabidopsis thaliana with genetically engineered membrane lipids. EMBO J. 1992 Dec;11(13):4685–4692. doi: 10.1002/j.1460-2075.1992.tb05573.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- von Glutz G., Walter P. Compartmentation of acetyl-coA in rat-liver mitochondria. Eur J Biochem. 1975 Dec 1;60(1):147–152. doi: 10.1111/j.1432-1033.1975.tb20986.x. [DOI] [PubMed] [Google Scholar]