Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Apr;110(4):1257–1266. doi: 10.1104/pp.110.4.1257

A Complex Array of Proteins Related to the Multimeric Leucine Aminopeptidase of Tomato.

Y Q Gu 1, V Pautot 1, F M Holzer 1, L L Walling 1
PMCID: PMC160919  PMID: 12226257

Abstract

Leucine aminopeptidase (LAP) mRNAs are induced in response to mechanical wounding, pathogen infection, and insect infestation (V. Pautot, F.M. Holzer, B. Reisch, L.L. Walling [1993] Proc Natl Acad Sci USA 90: 9906-9910). Polyclonal antibodies to a glutathione S-transferase-LAP fusion protein and affinity-purified antibodies recognizing LAP antigenic determinants detected four classes of polypeptides in tomato (Lycopersicon esculentum) leaves. All four classes had multiple polypeptides in two-dimensional polyacrylamide gel electrophoresis immunoblots. Although antigenically related to the wound-induced tomato LAP proteins, the 77- and 66-kD LAP-like proteins accumulated in both healthy and wounded leaves. Two classes of 55-kD polypeptides with distinctive isoelectric points were designated as plant LAPs; only the acidic LAP proteins accumulated to high levels after mechanical wounding or Pseudomonas syringae pv tomato infection of tomato leaves. The temporal accumulation of LAP mRNAs was correlated with the increase in acidic LAP protein subunits. A slow-migrating LAP activity was detected using a native gel assay after wounding. The molecular mass of the native wound-induced LAP enzyme was 353 kD. The 55-kD acidic LAP proteins were associated with induced LAP activity, whereas the neutral LAPs and the LAP-like proteins were not associated with this exopeptidase. A second, fast-migrating aminopeptidase was detected in both healthy and wounded tomato leaves. Cell fractionation experiments revealed that wound-induced LAP is a soluble enzyme.

Full Text

The Full Text of this article is available as a PDF (3.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baes P., Van Cutsem P. Chicory seed lot variety identification by leucine-aminopeptidase and esterase zymogram analysis. Electrophoresis. 1992 Nov;13(11):885–886. doi: 10.1002/elps.11501301194. [DOI] [PubMed] [Google Scholar]
  2. Bartling D., Weiler E. W. Leucine aminopeptidase from Arabidopsis thaliana. Molecular evidence for a phylogenetically conserved enzyme of protein turnover in higher plants. Eur J Biochem. 1992 Apr 1;205(1):425–431. doi: 10.1111/j.1432-1033.1992.tb16796.x. [DOI] [PubMed] [Google Scholar]
  3. Bowles D. J. Defense-related proteins in higher plants. Annu Rev Biochem. 1990;59:873–907. doi: 10.1146/annurev.bi.59.070190.004301. [DOI] [PubMed] [Google Scholar]
  4. Bryan J. K. Molecular weights of protein multimers from polyacrylamide gel electrophoresis. Anal Biochem. 1977 Apr;78(2):513–519. doi: 10.1016/0003-2697(77)90111-7. [DOI] [PubMed] [Google Scholar]
  5. Burley S. K., David P. R., Lipscomb W. N. Leucine aminopeptidase: bestatin inhibition and a model for enzyme-catalyzed peptide hydrolysis. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):6916–6920. doi: 10.1073/pnas.88.16.6916. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Burley S. K., David P. R., Taylor A., Lipscomb W. N. Molecular structure of leucine aminopeptidase at 2.7-A resolution. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6878–6882. doi: 10.1073/pnas.87.17.6878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Carpenter F. H., Harrington K. T. Intermolecular cross-linking of monomeric proteins and cross-linking of oligomeric proteins as a probe of quaternary structure. Application to leucine aminopeptidase (bovine lens). J Biol Chem. 1972 Sep 10;247(17):5580–5586. [PubMed] [Google Scholar]
  8. Carrasco P., Carbonell J. Changes in the Level of Peptidase Activities in Pea Ovaries during Senescence and Fruit Set Induced by Gibberellic Acid. Plant Physiol. 1990 Apr;92(4):1070–1074. doi: 10.1104/pp.92.4.1070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cueva R., García-Alvarez N., Suárez-Rendueles P. Yeast vacuolar aminopeptidase yscI. Isolation and regulation of the APE1 (LAP4) structural gene. FEBS Lett. 1989 Dec 18;259(1):125–129. doi: 10.1016/0014-5793(89)81510-8. [DOI] [PubMed] [Google Scholar]
  10. Cuypers H. T., van Loon-Klaassen L. A., Egberts W. T., de Jong W. W., Bloemendal H. The primary structure of leucine aminopeptidase from bovine eye lens. J Biol Chem. 1982 Jun 25;257(12):7077–7085. [PubMed] [Google Scholar]
  11. Hanson H., Glässer D., Ludewig M., Mannsfeldt H. G., John M. Struktur- und Wirkungsidentität der Leucinaminopeptidase aus Schweinenieren und Rinderaugenlinsen und Vergleich mit der Partikelaminopeptidase aus Schweinenieren. Hoppe Seylers Z Physiol Chem. 1967 Jun;348(6):689–704. [PubMed] [Google Scholar]
  12. Harris C. A., Hunte B., Krauss M. R., Taylor A., Epstein L. B. Induction of leucine aminopeptidase by interferon-gamma. Identification by protein microsequencing after purification by preparative two-dimensional gel electrophoresis. J Biol Chem. 1992 Apr 5;267(10):6865–6869. [PubMed] [Google Scholar]
  13. Henson H., Frohne M. Crystalline leucine aminopeptidase from lens (alpha-aminoacyl-peptide hydrolase; EC 3.4.11.1). Methods Enzymol. 1976;45:504–520. doi: 10.1016/s0076-6879(76)45045-0. [DOI] [PubMed] [Google Scholar]
  14. Hildmann T., Ebneth M., Peña-Cortés H., Sánchez-Serrano J. J., Willmitzer L., Prat S. General roles of abscisic and jasmonic acids in gene activation as a result of mechanical wounding. Plant Cell. 1992 Sep;4(9):1157–1170. doi: 10.1105/tpc.4.9.1157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hurkman W. J., Tanaka C. K. Solubilization of plant membrane proteins for analysis by two-dimensional gel electrophoresis. Plant Physiol. 1986 Jul;81(3):802–806. doi: 10.1104/pp.81.3.802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kim H., Lipscomb W. N. X-ray crystallographic determination of the structure of bovine lens leucine aminopeptidase complexed with amastatin: formulation of a catalytic mechanism featuring a gem-diolate transition state. Biochemistry. 1993 Aug 24;32(33):8465–8478. doi: 10.1021/bi00084a011. [DOI] [PubMed] [Google Scholar]
  17. Kohno H., Kanda S., Kanno T. Immunoaffinity purification and characterization of leucine aminopeptidase from human liver. J Biol Chem. 1986 Aug 15;261(23):10744–10748. [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. Larosa P. C., Chen Z., Nelson D. E., Singh N. K., Hasegawa P. M., Bressan R. A. Osmotin gene expression is posttranscriptionally regulated. Plant Physiol. 1992 Sep;100(1):409–415. doi: 10.1104/pp.100.1.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Liu X. Q., Jagendorf A. T. Neutral peptidases in the stroma of pea chloroplasts. Plant Physiol. 1986 Jun;81(2):603–608. doi: 10.1104/pp.81.2.603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. McKelvy J. F., Blumberg S. Inactivation and metabolism of neuropeptides. Annu Rev Neurosci. 1986;9:415–434. doi: 10.1146/annurev.ne.09.030186.002215. [DOI] [PubMed] [Google Scholar]
  22. Mehdy M. C. Active Oxygen Species in Plant Defense against Pathogens. Plant Physiol. 1994 Jun;105(2):467–472. doi: 10.1104/pp.105.2.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Melbye S. W., Carpenter F. H. Leucine aminopeptidase (bovine lens). Stability and size of subunits. J Biol Chem. 1971 Apr 25;246(8):2459–2463. [PubMed] [Google Scholar]
  24. Roovers E., Vincent M. E., van Kesteren E., Geraerts W. P., Planta R. J., Vreugdenhil E., van Heerikhuizen H. Characterization of a putative molluscan insulin-related peptide receptor. Gene. 1995 Sep 11;162(2):181–188. doi: 10.1016/0378-1119(95)00323-x. [DOI] [PubMed] [Google Scholar]
  25. Sanderink G. J., Artur Y., Siest G. Human aminopeptidases: a review of the literature. J Clin Chem Clin Biochem. 1988 Dec;26(12):795–807. doi: 10.1515/cclm.1988.26.12.795. [DOI] [PubMed] [Google Scholar]
  26. Smith D. E., Fisher P. A. Identification, developmental regulation, and response to heat shock of two antigenically related forms of a major nuclear envelope protein in Drosophila embryos: application of an improved method for affinity purification of antibodies using polypeptides immobilized on nitrocellulose blots. J Cell Biol. 1984 Jul;99(1 Pt 1):20–28. doi: 10.1083/jcb.99.1.20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sopanen T., Mikola J. Purification and partial characterization of barley leucine aminopeptidase. Plant Physiol. 1975 May;55(5):809–814. doi: 10.1104/pp.55.5.809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Stirling C. J., Colloms S. D., Collins J. F., Szatmari G., Sherratt D. J. xerB, an Escherichia coli gene required for plasmid ColE1 site-specific recombination, is identical to pepA, encoding aminopeptidase A, a protein with substantial similarity to bovine lens leucine aminopeptidase. EMBO J. 1989 May;8(5):1623–1627. doi: 10.1002/j.1460-2075.1989.tb03547.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Taylor A., Daims M., Lee J., Surgenor T. Identification and quantification of leucine aminopeptidase in aged normal and cataractous human lenses and ability of bovine lens LAP to cleave bovine crystallins. Curr Eye Res. 1982;2(1):47–56. doi: 10.3109/02713688208998379. [DOI] [PubMed] [Google Scholar]
  30. Thayer S. S., Choe H. T., Rausser S., Huffaker R. C. Characterization and subcellular localization of aminopeptidases in senescing barley leaves. Plant Physiol. 1988;87:894–897. doi: 10.1104/pp.87.4.894. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Varshavsky A. The N-end rule. Cell. 1992 May 29;69(5):725–735. doi: 10.1016/0092-8674(92)90285-k. [DOI] [PubMed] [Google Scholar]
  32. Vodkin L. O., Scandalios J. G. Comparative properties of genetically defined peptidases in maize. Biochemistry. 1980 Sep 30;19(20):4660–4667. doi: 10.1021/bi00561a019. [DOI] [PubMed] [Google Scholar]
  33. Wang C. S., Walling L. L., Eckard K. J., Lord E. M. Immunological Characterization of a Tapetal Protein in Developing Anthers of Lilium longiflorum. Plant Physiol. 1992 Jul;99(3):822–829. doi: 10.1104/pp.99.3.822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wood D. O., Solomon M. J., Speed R. R. Characterization of the Rickettsia prowazekii pepA gene encoding leucine aminopeptidase. J Bacteriol. 1993 Jan;175(1):159–165. doi: 10.1128/jb.175.1.159-165.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES