Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Apr;110(4):1283–1291. doi: 10.1104/pp.110.4.1283

A New Screening Method for Algal Photosynthetic Mutants (CO2-Insensitive Mutants of the Green Alga Chlorella ellipsoidea).

Y Matsuda 1, B Colman 1
PMCID: PMC160922  PMID: 12226260

Abstract

A new method has been developed for screening algal photosynthetic mutants. This method uses autoradiography to assess gross photosynthetic 14C fixation by green algal colonies on agar plates and allows the identification of clones that differ in photosynthetic characteristics from wild-type cells. Three wild-type cells, high-CO2-grown Chlorella ellipsoidea, air-grown C. ellipsoidea, and air-grown Chlorella saccharophila, had K0.5 values for dissolved inorganic carbon (DIC) of 1083, 250, and 50 [mu]M, respectively, and as plaques on agar plates at Chl densities greater than 25 [mu]g cm-2 exhibited relative amounts of 14C fixation of 15, 55, and 100%, respectively. Cells of C. ellipsoidea were mutagenized with x-rays and screened by this method. Growth of C. ellipsoidea in high CO2 represses DIC transport and thus lowers its affinity for DIC. Five of the mutants detected by this method showed high-affinity photosynthesis similar to air-grown wild-type cells even when grown in high CO2. Seven other mutants when grown in high CO2 showed affinities for DIC intermediate between air-grown and high-CO2-grown wild-type cells. The affinities of high-CO2-grown mutants were reflected precisely in their capacities to accumulate DIC intracellularly. These results indicate that the mutants are fully or partially insensitive to the repressive effect of ambient CO2 concentration on DIC transport.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennoun P., Levine R. P. Detecting mutants that have impaired photosynthesis by their increased level of fluorescence. Plant Physiol. 1967 Sep;42(9):1284–1287. doi: 10.1104/pp.42.9.1284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Birmingham B. C., Colman B. Measurement of carbon dioxide compensation points of freshwater algae. Plant Physiol. 1979 Nov;64(5):892–895. doi: 10.1104/pp.64.5.892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boynton J. E., Gillham N. W., Chabot J. F. Chloroplast ribosome deficient mutants in the green alga Chlamydomonas reinhardi and the question of chloroplast ribosome function. J Cell Sci. 1972 Mar;10(2):267–305. doi: 10.1242/jcs.10.2.267. [DOI] [PubMed] [Google Scholar]
  4. Gehl K. A., Colman B. Effect of External pH on the Internal pH of Chlorella saccharophila. Plant Physiol. 1985 Apr;77(4):917–921. doi: 10.1104/pp.77.4.917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Goodenough U. W., Armstrong J. J., Levine R. P. Photosynthetic Properties of ac-31, a Mutant Strain of Chlamydomonas reinhardi Devoid of Chloroplast Membrane Stacking. Plant Physiol. 1969 Jul;44(7):1001–1012. doi: 10.1104/pp.44.7.1001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kaplan A., Berry J. A. Glycolate Excretion and the Oxygen to Carbon Dioxide Net Exchange Ratio during Photosynthesis in Chlamydomonas reinhardtii. Plant Physiol. 1981 Feb;67(2):229–232. doi: 10.1104/pp.67.2.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lemaire C., Wollman F. A. The chloroplast ATP synthase in Chlamydomonas reinhardtii. I. Characterization of its nine constitutive subunits. J Biol Chem. 1989 Jun 15;264(17):10228–10234. [PubMed] [Google Scholar]
  8. Lemaire C., Wollman F. A. The chloroplast ATP synthase in Chlamydomonas reinhardtii. I. Characterization of its nine constitutive subunits. J Biol Chem. 1989 Jun 15;264(17):10228–10234. [PubMed] [Google Scholar]
  9. Marcus Y., Harel E., Kaplan A. Adaptation of the Cyanobacterium Anabaena variabilis to Low CO(2) Concentration in Their Environment. Plant Physiol. 1983 Jan;71(1):208–210. doi: 10.1104/pp.71.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Marek L. F., Spalding M. H. Changes in Photorespiratory Enzyme Activity in Response to Limiting CO(2) in Chlamydomonas reinhardtii. Plant Physiol. 1991 Sep;97(1):420–425. doi: 10.1104/pp.97.1.420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Matsuda Y., Colman B. Induction of CO2 and Bicarbonate Transport in the Green Alga Chlorella ellipsoidea (I. Time Course of Induction of the Two Systems). Plant Physiol. 1995 May;108(1):247–252. doi: 10.1104/pp.108.1.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Matsuda Y., Colman B. Induction of CO2 and Bicarbonate Transport in the Green Alga Chlorella ellipsoidea (II. Evidence for Induction in Response to External CO2 Concentration). Plant Physiol. 1995 May;108(1):253–260. doi: 10.1104/pp.108.1.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Moll B., Levine R. P. Characterization of a Photosynthetic Mutant Strain of Chlamydomonas reinhardi Deficient in Phosphoribulokinase Activity. Plant Physiol. 1970 Oct;46(4):576–580. doi: 10.1104/pp.46.4.576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Moroney J. V., Husic H. D., Tolbert N. E., Kitayama M., Manuel L. J., Togasaki R. K. Isolation and Characterization of a Mutant of Chlamydomonas reinhardtii Deficient in the CO(2) Concentrating Mechanism. Plant Physiol. 1989 Mar;89(3):897–903. doi: 10.1104/pp.89.3.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Price G. D., Badger M. R. Isolation and Characterization of High CO(2)-Requiring-Mutants of the Cyanobacterium Synechococcus PCC7942 : Two Phenotypes that Accumulate Inorganic Carbon but Are Apparently Unable to Generate CO(2) within the Carboxysome. Plant Physiol. 1989 Oct;91(2):514–525. doi: 10.1104/pp.91.2.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Schwarz R., Lieman-Hurwitz J., Hassidim M., Kaplan A. Phenotypic Complementation of High CO(2)-Requiring Mutants of the Cyanobacterium Synechococcus sp. Strain PCC 7942 by Inosine 5'-Monophosphate. Plant Physiol. 1992 Dec;100(4):1987–1993. doi: 10.1104/pp.100.4.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Spalding M. H., Spreitzer R. J., Ogren W. L. Carbonic Anhydrase-Deficient Mutant of Chlamydomonas reinhardii Requires Elevated Carbon Dioxide Concentration for Photoautotrophic Growth. Plant Physiol. 1983 Oct;73(2):268–272. doi: 10.1104/pp.73.2.268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Spreitzer R. J., Mets L. Photosynthesis-deficient Mutants of Chlamydomonas reinhardii with Associated Light-sensitive Phenotypes. Plant Physiol. 1981 Mar;67(3):565–569. doi: 10.1104/pp.67.3.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Suzuki K., Marek L. F., Spalding M. H. A Photorespiratory Mutant of Chlamydomonas reinhardtii. Plant Physiol. 1990 May;93(1):231–237. doi: 10.1104/pp.93.1.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Williams T. G., Colman B. Quantification of the Contribution of CO2, HCO3-, and External Carbonic Anhydrase to Photosynthesis at Low Dissolved Inorganic Carbon in Chlorella saccharophila. Plant Physiol. 1995 Jan;107(1):245–251. doi: 10.1104/pp.107.1.245. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES