Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Apr;110(4):1301–1308. doi: 10.1104/pp.110.4.1301

Betaine aldehyde dehydrogenase in sorghum.

A J Wood 1, H Saneoka 1, D Rhodes 1, R J Joly 1, P B Goldsbrough 1
PMCID: PMC160924  PMID: 8934627

Abstract

The ability to synthesize and accumulate glycine betaine is wide-spread among angiosperms and is thought to contribute to salt and drought tolerance. In plants glycine betaine is synthesized by the two-step oxidation of choline via the intermediate betaine aldehyde, catalyzed by choline monooxygenase and betaine aldehyde dehydrogenase (BADH). Two sorghum (Sorghum bicolor) cDNA clones, BADH1 and BADH15, putatively encoding betaine aldehyde dehydrogenase were isolated and characterized. BADH1 is a truncated cDNA of 1391 bp. BADH15 is a full-length cDNA clone, 1812 bp in length, predicted to encode a protein of 53.6 kD. The predicted amino acid sequences of BADH1 and BADH15 share significant homology with other plant BADHs. The effects of water deficit on BADH mRNA expression, leaf water relations, and glycine betaine accumulation were investigated in leaves of preflowering sorghum plants. BADH1 and BADH15 mRNA were both induced by water deficit and their expression coincided with the observed glycine betaine accumulation. During the course of 17 d, the leaf water potential in stressed sorghum plants reached -2.3 MPa. In response to water deficit, glycine betaine levels increased 26-fold and proline levels increased 108-fold. In severely stressed plants, proline accounted for > 60% of the total free amino acid pool. Accumulation of these compatible solutes significantly contributed to osmotic potential and allowed a maximal osmotic adjustment of 0.405 MPa.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arakawa K., Takabe T., Sugiyama T., Akazawa T. Purification of betaine-aldehyde dehydrogenase from spinach leaves and preparation of its antibody. J Biochem. 1987 Jun;101(6):1485–1488. doi: 10.1093/oxfordjournals.jbchem.a122019. [DOI] [PubMed] [Google Scholar]
  2. Binzel M. L., Hasegawa P. M., Rhodes D., Handa S., Handa A. K., Bressan R. A. Solute Accumulation in Tobacco Cells Adapted to NaCl. Plant Physiol. 1987 Aug;84(4):1408–1415. doi: 10.1104/pp.84.4.1408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boyd L. A., Adam L., Pelcher L. E., McHughen A., Hirji R., Selvaraj G. Characterization of an Escherichia coli gene encoding betaine aldehyde dehydrogenase (BADH): structural similarity to mammalian ALDHs and a plant BADH. Gene. 1991 Jul 15;103(1):45–52. doi: 10.1016/0378-1119(91)90389-s. [DOI] [PubMed] [Google Scholar]
  4. Burnet M., Lafontaine P. J., Hanson A. D. Assay, Purification, and Partial Characterization of Choline Monooxygenase from Spinach. Plant Physiol. 1995 Jun;108(2):581–588. doi: 10.1104/pp.108.2.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Csonka L. N. Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev. 1989 Mar;53(1):121–147. doi: 10.1128/mr.53.1.121-147.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hanson A. D., May A. M., Grumet R., Bode J., Jamieson G. C., Rhodes D. Betaine synthesis in chenopods: Localization in chloroplasts. Proc Natl Acad Sci U S A. 1985 Jun;82(11):3678–3682. doi: 10.1073/pnas.82.11.3678. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hanson A. D., Wyse R. Biosynthesis, translocation, and accumulation of betaine in sugar beet and its progenitors in relation to salinity. Plant Physiol. 1982 Oct;70(4):1191–1198. doi: 10.1104/pp.70.4.1191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ishitani M., Nakamura T., Han S. Y., Takabe T. Expression of the betaine aldehyde dehydrogenase gene in barley in response to osmotic stress and abscisic acid. Plant Mol Biol. 1995 Jan;27(2):307–315. doi: 10.1007/BF00020185. [DOI] [PubMed] [Google Scholar]
  9. Lamark T., Kaasen I., Eshoo M. W., Falkenberg P., McDougall J., Strøm A. R. DNA sequence and analysis of the bet genes encoding the osmoregulatory choline-glycine betaine pathway of Escherichia coli. Mol Microbiol. 1991 May;5(5):1049–1064. doi: 10.1111/j.1365-2958.1991.tb01877.x. [DOI] [PubMed] [Google Scholar]
  10. Lerma C., Rich P. J., Ju G. C., Yang W. J., Hanson A. D., Rhodes D. Betaine deficiency in maize : complementation tests and metabolic basis. Plant Physiol. 1991 Apr;95(4):1113–1119. doi: 10.1104/pp.95.4.1113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. McCue K. F., Hanson A. D. Salt-inducible betaine aldehyde dehydrogenase from sugar beet: cDNA cloning and expression. Plant Mol Biol. 1992 Jan;18(1):1–11. doi: 10.1007/BF00018451. [DOI] [PubMed] [Google Scholar]
  12. Rathinasabapathi B., McCue K. F., Gage D. A., Hanson A. D. Metabolic engineering of glycine betaine synthesis: plant betaine aldehyde dehydrogenases lacking typical transit peptides are targeted to tobacco chloroplasts where they confer betaine aldehyde resistance. Planta. 1994;193(2):155–162. doi: 10.1007/BF00192524. [DOI] [PubMed] [Google Scholar]
  13. Rhodes D., Rich P. J., Brunk D. G., Ju G. C., Rhodes J. C., Pauly M. H., Hansen L. A. Development of two isogenic sweet corn hybrids differing for glycinebetaine content. Plant Physiol. 1989 Nov;91(3):1112–1121. doi: 10.1104/pp.91.3.1112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Saghai-Maroof M. A., Soliman K. M., Jorgensen R. A., Allard R. W. Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci U S A. 1984 Dec;81(24):8014–8018. doi: 10.1073/pnas.81.24.8014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Weigel P., Weretilnyk E. A., Hanson A. D. Betaine aldehyde oxidation by spinach chloroplasts. Plant Physiol. 1986 Nov;82(3):753–759. doi: 10.1104/pp.82.3.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Weretilnyk E. A., Hanson A. D. Betaine aldehyde dehydrogenase polymorphism in spinach: genetic and biochemical characterization. Biochem Genet. 1988 Feb;26(1-2):143–151. doi: 10.1007/BF00555495. [DOI] [PubMed] [Google Scholar]
  18. Zhou J., Goldsbrough P. B. An Arabidopsis gene with homology to glutathione S-transferases is regulated by ethylene. Plant Mol Biol. 1993 Jun;22(3):517–523. doi: 10.1007/BF00015980. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES