Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Apr;110(4):1395–1404. doi: 10.1104/pp.110.4.1395

Physicochemical and serological characterization of rice alpha-amylase isoforms and identification of their corresponding genes.

T Mitsui 1, J Yamaguchi 1, T Akazawa 1
PMCID: PMC160934  PMID: 8934629

Abstract

We have identified, purified, and characterized 10 alpha-amylase isoforms from suspension-cultured rice (Oryza sativa L.) cells having different isoelectric point values. They had distinguishable optimum temperatures for enzymatic activity and molecular sizes. The results of immunoblotting indicated that polyclonal anti-A + B antibodies bound well to isoforms A, B, Y, and Z but weakly or not at all to E, F, G, H, I, and J. However, the anti-A + B antibodies inhibited the enzyme activities of only isoforms A and B. Polyclonal anti-H antibodies strongly bound to isoforms F, G, H, I, and J, whereas polyclonal anti-E antibodies preferentially recognized isoform E. A monoclonal antibody against isoform H (H-G49) inhibited the activities of isoforms E, G, H, I, and J, whereas it did not inhibit those of isoforms A, B, Y, and Z. Judging from their physicochemical and serological properties, we classified the rice alpha-amylase isoforms into two major classes, class I (A, B, Y, and Z) and class II (E, F, G, H, I, and J), and into four subgroups, group 1 (A and B), group 2 (Y and Z), group 3 (E), and group 4 (F, G, H, I, and J). Partial amino acid sequences for isoforms A, E, G, and H were also determined. In addition, the recombinant alpha-amylases expressed by plasmid pEno/103 containing the rice alpha-amylase gene RAmy1A in yeast were identified as both isoforms A and B. These analyses indicated that isoforms A and B were encoded by the gene RAmy1A, isoforms G and H were encoded by the gene RAmy3D, and isoform E was encoded by RAmy3E. The results strongly suggest that some isoforms within subgroups are formed by posttranslational modifications.

Full Text

The Full Text of this article is available as a PDF (3.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Araki Y., Ikebe M. Activation of smooth muscle myosin light chain kinase activity by a monoclonal antibody which recognizes the calmodulin-binding region. Biochem J. 1991 May 1;275(Pt 3):679–684. doi: 10.1042/bj2750679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baulcombe D C, Huttly A K, Martienssen R A, Barker R F, Jarvis M G. A novel wheat alpha-amylase gene (alpha-Amy3). Mol Gen Genet. 1987 Aug;209(1):33–40. doi: 10.1007/BF00329833. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  4. Chiba Y., Nieda Y., Nakajima T., Ichishima E. Unique enzymatic properties of alpha-amylase-III from suspension-cultured rice cells. Agric Biol Chem. 1991 Mar;55(3):901–902. [PubMed] [Google Scholar]
  5. Cleveland D. W., Fischer S. G., Kirschner M. W., Laemmli U. K. Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J Biol Chem. 1977 Feb 10;252(3):1102–1106. [PubMed] [Google Scholar]
  6. Daussant J., Miyata S., Mitsui T., Akazawa T. Enzymic mechanism of starch breakdown in germinating rice seeds : 15. Immunochemical study on multiple forms of amylase. Plant Physiol. 1983 Jan;71(1):88–95. doi: 10.1104/pp.71.1.88. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Deikman J., Jones R. L. Control of alpha-amylase mRNA accumulation by gibberellic Acid and calcium in barley aleurone layers. Plant Physiol. 1985 May;78(1):192–198. doi: 10.1104/pp.78.1.192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hayashi M., Tsuru A., Mitsui T., Takahashi N., Hanzawa H., Arata Y., Akazawa T. Structure and biosynthesis of the xylose-containing carbohydrate moiety of rice alpha-amylase. Eur J Biochem. 1990 Jul 31;191(2):287–295. doi: 10.1111/j.1432-1033.1990.tb19122.x. [DOI] [PubMed] [Google Scholar]
  9. Huang J. K., Swegle M., Dandekar A. M., Muthukrishnan S. Expression and regulation of alpha-amylase gene family in barley aleurones. J Mol Appl Genet. 1984;2(6):579–588. [PubMed] [Google Scholar]
  10. Huang N., Chandler J., Thomas B. R., Koizumi N., Rodriguez R. L. Metabolic regulation of alpha-amylase gene expression in transgenic cell cultures of rice (Oryza sativa L.). Plant Mol Biol. 1993 Nov;23(4):737–747. doi: 10.1007/BF00021529. [DOI] [PubMed] [Google Scholar]
  11. Huang N., Koizumi N., Reinl S., Rodriguez R. L. Structural organization and differential expression of rice alpha-amylase genes. Nucleic Acids Res. 1990 Dec 11;18(23):7007–7014. doi: 10.1093/nar/18.23.7007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Huang N., Reinl S. J., Rodriguez R. L. RAmy2A; a novel alpha-amylase-encoding gene in rice. Gene. 1992 Feb 15;111(2):223–228. doi: 10.1016/0378-1119(92)90690-q. [DOI] [PubMed] [Google Scholar]
  13. Huttly A. K., Martienssen R. A., Baulcombe D. C. Sequence heterogeneity and differential expression of the alpha-Amy2 gene family in wheat. Mol Gen Genet. 1988 Oct;214(2):232–240. doi: 10.1007/BF00337716. [DOI] [PubMed] [Google Scholar]
  14. Itoh K., Yamaguchi J., Huang N., Rodriguez R. L., Akazawa T., Shimamoto K. Developmental and Hormonal Regulation of Rice [alpha]-Amylase(RAmy1A)-gusA Fusion Genes in Transgenic Rice Seeds. Plant Physiol. 1995 Jan;107(1):25–31. doi: 10.1104/pp.107.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jacobsen J. V., Higgins T. J. Characterization of the alpha-Amylases Synthesized by Aleurone Layers of Himalaya Barley in Response to Gibberellic Acid. Plant Physiol. 1982 Dec;70(6):1647–1653. doi: 10.1104/pp.70.6.1647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Karrer E. E., Rodriguez R. L. Metabolic regulation of rice alpha-amylase and sucrose synthase genes in planta. Plant J. 1992 Jul;2(4):517–523. [PubMed] [Google Scholar]
  17. Kearney J. F., Radbruch A., Liesegang B., Rajewsky K. A new mouse myeloma cell line that has lost immunoglobulin expression but permits the construction of antibody-secreting hybrid cell lines. J Immunol. 1979 Oct;123(4):1548–1550. [PubMed] [Google Scholar]
  18. Khursheed B., Rogers J. C. Barley alpha-amylase genes. Quantitative comparison of steady-state mRNA levels from individual members of the two different families expressed in aleurone cells. J Biol Chem. 1988 Dec 15;263(35):18953–18960. [PubMed] [Google Scholar]
  19. Kim J. K., Wu R. Nucleotide sequence of a high-pI rice (Oryza sativa) -amylase gene. Plant Mol Biol. 1992 Jan;18(2):399–402. doi: 10.1007/BF00034966. [DOI] [PubMed] [Google Scholar]
  20. Kumagai M. H., Shah M., Terashima M., Vrkljan Z., Whitaker J. R., Rodriguez R. L. Expression and secretion of rice alpha-amylase by Saccharomyces cerevisiae. Gene. 1990 Oct 15;94(2):209–216. doi: 10.1016/0378-1119(90)90389-9. [DOI] [PubMed] [Google Scholar]
  21. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  22. Lecommandeur D., Sirou Y., Laurière C. Glycan research on barley, maize, oats, and sorghum grain alpha-amylases: comparison with rice alpha-amylase. Arch Biochem Biophys. 1990 Apr;278(1):245–250. doi: 10.1016/0003-9861(90)90254-v. [DOI] [PubMed] [Google Scholar]
  23. Mitsui T., Akazawa T., Christeller J. T., Tartakoff A. M. Biosynthesis of rice seed alpha-amylase: two pathways of amylase secretion by the scutellum. Arch Biochem Biophys. 1985 Aug 15;241(1):315–328. doi: 10.1016/0003-9861(85)90388-1. [DOI] [PubMed] [Google Scholar]
  24. Miyata S., Akazawa T. Biosynthesis of rice seed alpha-amylase: proteolytic processing and glycosylation of precursor polypeptides by microsomes. J Cell Biol. 1983 Mar;96(3):802–806. doi: 10.1083/jcb.96.3.802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Miyata S., Akazawa T. Enzymic mechanism of starch breakdown in germinating rice seeds : 12. Biosynthesis of alpha-amylase in relation to protein glycosylation. Plant Physiol. 1982 Jul;70(1):147–153. doi: 10.1104/pp.70.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Miyata S., Okamoto K., Watanabe A., Akazawa T. Enzymic Mechanism of Starch Breakdown in Germinating Rice Seeds: 10. IN VIVO AND IN VITRO SYNTHESIS OF alpha-AMYLASE IN RICE SEED SCUTELLUM. Plant Physiol. 1981 Dec;68(6):1314–1318. doi: 10.1104/pp.68.6.1314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Muthukrishnan S., Gill B. S., Swegle M., Chandra G. R. Structural genes for alpha-amylases are located on barley chromosomes 1 and 6. J Biol Chem. 1984 Nov 25;259(22):13637–13639. [PubMed] [Google Scholar]
  28. O'Neill S. D., Kumagai M. H., Majumdar A., Huang N., Sutliff T. D., Rodriguez R. L. The alpha-amylase genes in Oryza sativa: characterization of cDNA clones and mRNA expression during seed germination. Mol Gen Genet. 1990 Apr;221(2):235–244. doi: 10.1007/BF00261726. [DOI] [PubMed] [Google Scholar]
  29. Rogers J. C., Milliman C. Isolation and sequence analysis of a barley alpha-amylase cDNA clone. J Biol Chem. 1983 Jul 10;258(13):8169–8174. [PubMed] [Google Scholar]
  30. Rogers J. C. Two barley alpha-amylase gene families are regulated differently in aleurone cells. J Biol Chem. 1985 Mar 25;260(6):3731–3738. [PubMed] [Google Scholar]
  31. Sticher L., Jones R. L. Isolation and Partial Characterization of a Factor from Barley Aleurone that Modifies alpha-Amylase in Vitro. Plant Physiol. 1991 Nov;97(3):936–942. doi: 10.1104/pp.97.3.936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Søgaard M., Olsen F. L., Svensson B. C-terminal processing of barley alpha-amylase 1 in malt, aleurone protoplasts, and yeast. Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):8140–8144. doi: 10.1073/pnas.88.18.8140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tanaka Y., Ito T., Akazawa T. Enzymic Mechanism of Starch Breakdown in Germinating Rice Seeds: III. alpha-Amylase Isozymes. Plant Physiol. 1970 Nov;46(5):650–654. doi: 10.1104/pp.46.5.650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Thomas B. R., Rodriguez R. L. Metabolite Signals Regulate Gene Expression and Source/Sink Relations in Cereal Seedlings. Plant Physiol. 1994 Dec;106(4):1235–1239. doi: 10.1104/pp.106.4.1235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wood J. G., Sarinana F. O. The staining of sciatic nerve glycoproteins on polyacrylamide gels with concanavalin A-peroxidase. Anal Biochem. 1975 Nov;69(1):320–322. doi: 10.1016/0003-2697(75)90597-7. [DOI] [PubMed] [Google Scholar]
  37. Yu S. M., Kuo Y. H., Sheu G., Sheu Y. J., Liu L. F. Metabolic derepression of alpha-amylase gene expression in suspension-cultured cells of rice. J Biol Chem. 1991 Nov 5;266(31):21131–21137. [PubMed] [Google Scholar]
  38. Yu S. M., Tzou W. S., Lo W. S., Kuo Y. H., Lee H. T., Wu R. Regulation of alpha-amylase-encoding gene expression in germinating seeds and cultured cells of rice. Gene. 1992 Dec 15;122(2):247–253. doi: 10.1016/0378-1119(92)90212-8. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES