Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1995 Aug;7(8):1173–1184. doi: 10.1105/tpc.7.8.1173

Calcium Channel Activity during Pollen Tube Growth and Reorientation.

R Malho 1, N D Read 1, A J Trewavas 1, M S Pais 1
PMCID: PMC160942  PMID: 12242402

Abstract

We have shown previously that the inhibition of pollen tube growth and its subsequent reorientation in Agapanthus umbellatus are preceded by an increase in cytosolic free calcium ([Ca2+]c), suggesting a role for Ca2+ in signaling these processes. In this study, a novel procedure was used to measure Ca2+ channel activity in living pollen tubes subjected to various growth reorienting treatments (electrical fields and ionophoretic microinjection). The method involves adding extracellular Mn2+ to quench the fluorescence of intracellular Indo-1 at its ca2+-insensitive wavelength (isosbestic point). The spatial and temporal kinetics of Ca2+ channel activity correlated well with measurements of [Ca2+]c dynamics obtained by fluorescence ratio imaging of Indo-1. Tip-focused gradients in Ca2+ channel activity and [Ca2+]c were observed and quantified in growing pollen tubes and in swollen pollen tubes before reoriented growth. In nongrowing pollen tubes, Ca2+ channel activity was very low and [Ca2+]c gradients were absent. Measurements of membrane potential indicated that the growth reorienting treatments induced a depolarization of the plasma membrane, suggesting that voltage-gated Ca2+ channels might be activated.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blackbourn H. D., Barker P. J., Huskisson N. S., Battey N. H. Properties and partial protein sequence of plant annexins. Plant Physiol. 1992 Jul;99(3):864–871. doi: 10.1104/pp.99.3.864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ding J. P., Pickard B. G. Mechanosensory calcium-selective cation channels in epidermal cells. Plant J. 1993;3(1):83–110. doi: 10.1111/j.1365-313x.1993.tb00013.x. [DOI] [PubMed] [Google Scholar]
  3. Duncan A., Robertson C., Russell R. I. The fecal osmotic gap: technical aspects regarding its calculation. J Lab Clin Med. 1992 Apr;119(4):359–363. [PubMed] [Google Scholar]
  4. Garrill A., Jackson S. L., Lew R. R., Heath I. B. Ion channel activity and tip growth: tip-localized stretch-activated channels generate an essential Ca2+ gradient in the oomycete Saprolegnia ferax. Eur J Cell Biol. 1993 Apr;60(2):358–365. [PubMed] [Google Scholar]
  5. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  6. Hess P. Calcium channels in vertebrate cells. Annu Rev Neurosci. 1990;13:337–356. doi: 10.1146/annurev.ne.13.030190.002005. [DOI] [PubMed] [Google Scholar]
  7. Huang J. W., Grunes D. L., Kochian L. V. Voltage-dependent Ca2+ influx into right-side-out plasma membrane vesicles isolated from wheat roots: characterization of a putative Ca2+ channel. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3473–3477. doi: 10.1073/pnas.91.8.3473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hulskamp M., Schneitz K., Pruitt R. E. Genetic Evidence for a Long-Range Activity That Directs Pollen Tube Guidance in Arabidopsis. Plant Cell. 1995 Jan;7(1):57–64. doi: 10.1105/tpc.7.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jackson S. L., Heath I. B. Roles of calcium ions in hyphal tip growth. Microbiol Rev. 1993 Jun;57(2):367–382. doi: 10.1128/mr.57.2.367-382.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jacob R. Agonist-stimulated divalent cation entry into single cultured human umbilical vein endothelial cells. J Physiol. 1990 Feb;421:55–77. doi: 10.1113/jphysiol.1990.sp017933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Obermeyer G., Weisenseel M. H. Calcium channel blocker and calmodulin antagonists affect the gradient of free calcium ions in lily pollen tubes. Eur J Cell Biol. 1991 Dec;56(2):319–327. [PubMed] [Google Scholar]
  12. Owen C. S. Simultaneous measurement of two cations with the fluorescent dye indo-1. Anal Biochem. 1993 Nov 15;215(1):90–95. doi: 10.1006/abio.1993.1559. [DOI] [PubMed] [Google Scholar]
  13. Pierson E. S., Miller D. D., Callaham D. A., Shipley A. M., Rivers B. A., Cresti M., Hepler P. K. Pollen tube growth is coupled to the extracellular calcium ion flux and the intracellular calcium gradient: effect of BAPTA-type buffers and hypertonic media. Plant Cell. 1994 Dec;6(12):1815–1828. doi: 10.1105/tpc.6.12.1815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rathore K. S., Cork R. J., Robinson K. R. A cytoplasmic gradient of Ca2+ is correlated with the growth of lily pollen tubes. Dev Biol. 1991 Dec;148(2):612–619. doi: 10.1016/0012-1606(91)90278-b. [DOI] [PubMed] [Google Scholar]
  15. Thuleau P., Moreau M., Schroeder J. I., Ranjeva R. Recruitment of plasma membrane voltage-dependent calcium-permeable channels in carrot cells. EMBO J. 1994 Dec 15;13(24):5843–5847. doi: 10.1002/j.1460-2075.1994.tb06928.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Thuleau P., Ward J. M., Ranjeva R., Schroeder J. I. Voltage-dependent calcium-permeable channels in the plasma membrane of a higher plant cell. EMBO J. 1994 Jul 1;13(13):2970–2975. doi: 10.1002/j.1460-2075.1994.tb06595.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wang C., Rathore K. S., Robinson K. R. The responses of pollen to applied electrical fields. Dev Biol. 1989 Dec;136(2):405–410. doi: 10.1016/0012-1606(89)90266-2. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES