Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1995 Aug;7(8):1295–1305. doi: 10.1105/tpc.7.8.1295

The initiation codon determines the efficiency but not the site of translation initiation in Chlamydomonas chloroplasts.

X Chen 1, K L Kindle 1, D B Stern 1
PMCID: PMC160952  PMID: 7549485

Abstract

To study translation initiation in Chlamydomonas chloroplasts, we mutated the initiation codon AUG to AUU, ACG, ACC, ACU, and UUC in the chloroplast petA gene, which encodes cytochrome f of the cytochrome b6/f complex. Cytochrome f accumulated to detectable levels in all mutant strains except the one with a UUC codon, but only the mutant with an AUU codon grew well at 24 degrees C under conditions that require photosynthesis. Because no cytochrome f was detectable in the UUC mutant and because each mutant that accumulated cytochrome f did so at a different level, we concluded that any residual translation probably initiates at the mutant codon. As a further demonstration that alternative initiation sites are not used in vivo, we introduced in-frame UAA stop codons immediately downstream or upstream or in place of the initiation codon. Stop codons at or downstream of the initiation codon prevented accumulation of cytochrome f, whereas the one immediately upstream of the initiation codon had no effect on the accumulation of cytochrome f. These results suggest that an AUG codon is not required to specify the site of translation initiation in chloroplasts but that the efficiency of translation initiation depends on the identity of the initiation codon.

Full Text

The Full Text of this article is available as a PDF (3.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berry J. O., Breiding D. E., Klessig D. F. Light-mediated control of translational initiation of ribulose-1, 5-bisphosphate carboxylase in amaranth cotyledons. Plant Cell. 1990 Aug;2(8):795–803. doi: 10.1105/tpc.2.8.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berry J. O., Carr J. P., Klessig D. F. mRNAs encoding ribulose-1,5-bisphosphate carboxylase remain bound to polysomes but are not translated in amaranth seedlings transferred to darkness. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4190–4194. doi: 10.1073/pnas.85.12.4190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bonham-Smith P. C., Bourque D. P. Translation of chloroplast-encoded mRNA: potential initiation and termination signals. Nucleic Acids Res. 1989 Mar 11;17(5):2057–2080. doi: 10.1093/nar/17.5.2057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen X., Kindle K., Stern D. Initiation codon mutations in the Chlamydomonas chloroplast petD gene result in temperature-sensitive photosynthetic growth. EMBO J. 1993 Sep;12(9):3627–3635. doi: 10.1002/j.1460-2075.1993.tb06036.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Danon A., Mayfield S. P. Light regulated translational activators: identification of chloroplast gene specific mRNA binding proteins. EMBO J. 1991 Dec;10(13):3993–4001. doi: 10.1002/j.1460-2075.1991.tb04974.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Drapier D., Girard-Bascou J., Wollman F. A. Evidence for Nuclear Control of the Expression of the atpA and atpB Chloroplast Genes in Chlamydomonas. Plant Cell. 1992 Mar;4(3):283–295. doi: 10.1105/tpc.4.3.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dron M., Rahire M., Rochaix J. D. Sequence of the chloroplast 16S rRNA gene and its surrounding regions of Chlamydomonas reinhardii. Nucleic Acids Res. 1982 Dec 11;10(23):7609–7620. doi: 10.1093/nar/10.23.7609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gillham N. W., Boynton J. E., Hauser C. R. Translational regulation of gene expression in chloroplasts and mitochondria. Annu Rev Genet. 1994;28:71–93. doi: 10.1146/annurev.ge.28.120194.000443. [DOI] [PubMed] [Google Scholar]
  9. Girard-Bascou J., Pierre Y., Drapier D. A nuclear mutation affects the synthesis of the chloroplast psbA gene production Chlamydomonas reinhardtii. Curr Genet. 1992 Jul;22(1):47–52. doi: 10.1007/BF00351741. [DOI] [PubMed] [Google Scholar]
  10. Gold J. C., Spremulli L. L. Euglena gracilis chloroplast initiation factor 2. Identification and initial characterization. J Biol Chem. 1985 Dec 5;260(28):14897–14900. [PubMed] [Google Scholar]
  11. Gold L., Pribnow D., Schneider T., Shinedling S., Singer B. S., Stormo G. Translational initiation in prokaryotes. Annu Rev Microbiol. 1981;35:365–403. doi: 10.1146/annurev.mi.35.100181.002053. [DOI] [PubMed] [Google Scholar]
  12. Johnson E. M., Schnabelrauch L. S., Sears B. B. A plastome mutation affects processing of both chloroplast and nuclear DNA-encoded plastid proteins. Mol Gen Genet. 1991 Jan;225(1):106–112. doi: 10.1007/BF00282648. [DOI] [PubMed] [Google Scholar]
  13. Kim J., Mullet J. E. Ribosome-binding sites on chloroplast rbcL and psbA mRNAs and light-induced initiation of D1 translation. Plant Mol Biol. 1994 Jun;25(3):437–448. doi: 10.1007/BF00043872. [DOI] [PubMed] [Google Scholar]
  14. Klein R. R., Mason H. S., Mullet J. E. Light-regulated translation of chloroplast proteins. I. Transcripts of psaA-psaB, psbA, and rbcL are associated with polysomes in dark-grown and illuminated barley seedlings. J Cell Biol. 1988 Feb;106(2):289–301. doi: 10.1083/jcb.106.2.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Klein R. R., Mullet J. E. Regulation of chloroplast-encoded chlorophyll-binding protein translation during higher plant chloroplast biogenesis. J Biol Chem. 1986 Aug 25;261(24):11138–11145. [PubMed] [Google Scholar]
  16. Kostrzewa M., Zetsche K. Organization of plastid-encoded ATPase genes and flanking regions including homologues of infB and tsf in the thermophilic red alga Galdieria sulphuraria. Plant Mol Biol. 1993 Oct;23(1):67–76. doi: 10.1007/BF00021420. [DOI] [PubMed] [Google Scholar]
  17. Kraus B. L., Spremulli L. L. Chloroplast initiation factor 3 from Euglena gracilis. Identification and initial characterization. J Biol Chem. 1986 Apr 15;261(11):4781–4784. [PubMed] [Google Scholar]
  18. Kuchka M. R., Mayfield S. P., Rochaix J. D. Nuclear mutations specifically affect the synthesis and/or degradation of the chloroplast-encoded D2 polypeptide of photosystem II in Chlamydomonas reinhardtii. EMBO J. 1988 Feb;7(2):319–324. doi: 10.1002/j.1460-2075.1988.tb02815.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kuras R., Wollman F. A. The assembly of cytochrome b6/f complexes: an approach using genetic transformation of the green alga Chlamydomonas reinhardtii. EMBO J. 1994 Mar 1;13(5):1019–1027. doi: 10.1002/j.1460-2075.1994.tb06350.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lagúnez-Otero J. rRNA-mRNA complementarity: implications for translation initiation. Trends Biochem Sci. 1993 Nov;18(11):406–408. doi: 10.1016/0968-0004(93)90134-9. [DOI] [PubMed] [Google Scholar]
  22. Lin Q., Ma L., Burkhart W., Spremulli L. L. Isolation and characterization of cDNA clones for chloroplast translational initiation factor-3 from Euglena gracilis. J Biol Chem. 1994 Apr 1;269(13):9436–9444. [PubMed] [Google Scholar]
  23. Mayfield S. P., Cohen A., Danon A., Yohn C. B. Translation of the psbA mRNA of Chlamydomonas reinhardtii requires a structured RNA element contained within the 5' untranslated region. J Cell Biol. 1994 Dec;127(6 Pt 1):1537–1545. doi: 10.1083/jcb.127.6.1537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rochaix J. D., Kuchka M., Mayfield S., Schirmer-Rahire M., Girard-Bascou J., Bennoun P. Nuclear and chloroplast mutations affect the synthesis or stability of the chloroplast psbC gene product in Chlamydomonas reinhardtii. EMBO J. 1989 Apr;8(4):1013–1021. doi: 10.1002/j.1460-2075.1989.tb03468.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sakamoto W., Chen X., Kindle K. L., Stern D. B. Function of the Chlamydomonas reinhardtii petd 5' untranslated region in regulating the accumulation of subunit IV of the cytochrome b6/f complex. Plant J. 1994 Oct;6(4):503–512. doi: 10.1046/j.1365-313x.1994.6040503.x. [DOI] [PubMed] [Google Scholar]
  26. Shepherd H. S., Boynton J. E., Gillham N. W. Mutations in nine chloroplast loci of Chlamydomonas affecting different photosynthetic functions. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1353–1357. doi: 10.1073/pnas.76.3.1353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Smith D. B., Johnson K. S. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene. 1988 Jul 15;67(1):31–40. doi: 10.1016/0378-1119(88)90005-4. [DOI] [PubMed] [Google Scholar]
  28. Stern D. B., Radwanski E. R., Kindle K. L. A 3' stem/loop structure of the Chlamydomonas chloroplast atpB gene regulates mRNA accumulation in vivo. Plant Cell. 1991 Mar;3(3):285–297. doi: 10.1105/tpc.3.3.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Turmel M., Mercier J. P., Côté M. J. Group I introns interrupt the chloroplast psaB and psbC and the mitochondrial rrnL gene in Chlamydomonas. Nucleic Acids Res. 1993 Nov 11;21(22):5242–5250. doi: 10.1093/nar/21.22.5242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Zerges W., Rochaix J. D. The 5' leader of a chloroplast mRNA mediates the translational requirements for two nucleus-encoded functions in Chlamydomonas reinhardtii. Mol Cell Biol. 1994 Aug;14(8):5268–5277. doi: 10.1128/mcb.14.8.5268. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES