Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1995 Sep;7(9):1357–1368. doi: 10.1105/tpc.7.9.1357

Disease resistance conferred by expression of a gene encoding H2O2-generating glucose oxidase in transgenic potato plants.

G Wu 1, B J Shortt 1, E B Lawrence 1, E B Levine 1, K C Fitzsimmons 1, D M Shah 1
PMCID: PMC160957  PMID: 8589621

Abstract

Plant defense responses to pathogen infection involve the production of active oxygen species, including hydrogen peroxide (H2O2). We obtained transgenic potato plants expressing a fungal gene encoding glucose oxidase, which generates H2O2 when glucose is oxidized. H2O2 levels were elevated in both leaf and tuber tissues of these plants. Transgenic potato tubers exhibited strong resistance to a bacterial soft rot disease caused by Erwinia carotovora subsp carotovora, and disease resistance was sustained under both aerobic and anaerobic conditions of bacterial infection. This resistance to soft rot was apparently mediated by elevated levels of H2O2, because the resistance could be counteracted by exogenously added H2O2-degrading catalase. The transgenic plants with increased levels of H2O2 also exhibited enhanced resistance to potato late blight caused by Phytophthora infestans. The development of lesions resulting from infection by P. infestans was significantly delayed in leaves of these plants. Thus, the expression of an active oxygen species-generating enzyme in transgenic plants represents a novel approach for engineering broad-spectrum disease resistance in plants.

Full Text

The Full Text of this article is available as a PDF (3.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apostol I., Heinstein P. F., Low P. S. Rapid Stimulation of an Oxidative Burst during Elicitation of Cultured Plant Cells : Role in Defense and Signal Transduction. Plant Physiol. 1989 May;90(1):109–116. doi: 10.1104/pp.90.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Auh C. K., Murphy T. M. Plasma Membrane Redox Enzyme Is Involved in the Synthesis of O2- and H2O2 by Phytophthora Elicitor-Stimulated Rose Cells. Plant Physiol. 1995 Apr;107(4):1241–1247. doi: 10.1104/pp.107.4.1241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bowles D. J. Defense-related proteins in higher plants. Annu Rev Biochem. 1990;59:873–907. doi: 10.1146/annurev.bi.59.070190.004301. [DOI] [PubMed] [Google Scholar]
  4. Bradley D. J., Kjellbom P., Lamb C. J. Elicitor- and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defense response. Cell. 1992 Jul 10;70(1):21–30. doi: 10.1016/0092-8674(92)90530-p. [DOI] [PubMed] [Google Scholar]
  5. Brennan T., Frenkel C. Involvement of hydrogen peroxide in the regulation of senescence in pear. Plant Physiol. 1977 Mar;59(3):411–416. doi: 10.1104/pp.59.3.411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brisson L. F., Tenhaken R., Lamb C. Function of Oxidative Cross-Linking of Cell Wall Structural Proteins in Plant Disease Resistance. Plant Cell. 1994 Dec;6(12):1703–1712. doi: 10.1105/tpc.6.12.1703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chen Z., Silva H., Klessig D. F. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science. 1993 Dec 17;262(5141):1883–1886. doi: 10.1126/science.8266079. [DOI] [PubMed] [Google Scholar]
  8. Degousee N., Triantaphylides C., Montillet J. L. Involvement of Oxidative Processes in the Signaling Mechanisms Leading to the Activation of Glyceollin Synthesis in Soybean (Glycine max). Plant Physiol. 1994 Mar;104(3):945–952. doi: 10.1104/pp.104.3.945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dixon R. A., Harrison M. J. Activation, structure, and organization of genes involved in microbial defense in plants. Adv Genet. 1990;28:165–234. doi: 10.1016/s0065-2660(08)60527-1. [DOI] [PubMed] [Google Scholar]
  10. Gallo L. L. Sterol ester hydrolase from rat pancreas. Methods Enzymol. 1981;71(Pt 100):664–674. doi: 10.1016/0076-6879(81)71079-6. [DOI] [PubMed] [Google Scholar]
  11. Heineke D., Sonnewald U., Büssis D., Günter G., Leidreiter K., Wilke I., Raschke K., Willmitzer L., Heldt H. W. Apoplastic expression of yeast-derived invertase in potato : effects on photosynthesis, leaf solute composition, water relations, and tuber composition. Plant Physiol. 1992 Sep;100(1):301–308. doi: 10.1104/pp.100.1.301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Keen N. T. The molecular biology of disease resistance. Plant Mol Biol. 1992 May;19(1):109–122. doi: 10.1007/BF00015609. [DOI] [PubMed] [Google Scholar]
  13. Klessig D. F., Malamy J. The salicylic acid signal in plants. Plant Mol Biol. 1994 Dec;26(5):1439–1458. doi: 10.1007/BF00016484. [DOI] [PubMed] [Google Scholar]
  14. Kriechbaum M., Heilmann H. J., Wientjes F. J., Hahn M., Jany K. D., Gassen H. G., Sharif F., Alaeddinoglu G. Cloning and DNA sequence analysis of the glucose oxidase gene from Aspergillus niger NRRL-3. FEBS Lett. 1989 Sep 11;255(1):63–66. doi: 10.1016/0014-5793(89)81061-0. [DOI] [PubMed] [Google Scholar]
  15. Lamb C. J., Lawton M. A., Dron M., Dixon R. A. Signals and transduction mechanisms for activation of plant defenses against microbial attack. Cell. 1989 Jan 27;56(2):215–224. doi: 10.1016/0092-8674(89)90894-5. [DOI] [PubMed] [Google Scholar]
  16. Levine A., Tenhaken R., Dixon R., Lamb C. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell. 1994 Nov 18;79(4):583–593. doi: 10.1016/0092-8674(94)90544-4. [DOI] [PubMed] [Google Scholar]
  17. Liu D., Raghothama K. G., Hasegawa P. M., Bressan R. A. Osmotin overexpression in potato delays development of disease symptoms. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1888–1892. doi: 10.1073/pnas.91.5.1888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mehdy M. C. Active Oxygen Species in Plant Defense against Pathogens. Plant Physiol. 1994 Jun;105(2):467–472. doi: 10.1104/pp.105.2.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Okuda T., Matsuda Y., Yamanaka A., Sagisaka S. Abrupt increase in the level of hydrogen peroxide in leaves of winter wheat is caused by cold treatment. Plant Physiol. 1991 Nov;97(3):1265–1267. doi: 10.1104/pp.97.3.1265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Richins R. D., Scholthof H. B., Shepherd R. J. Sequence of figwort mosaic virus DNA (caulimovirus group). Nucleic Acids Res. 1987 Oct 26;15(20):8451–8466. doi: 10.1093/nar/15.20.8451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sanger M., Daubert S., Goodman R. M. Characteristics of a strong promoter from figwort mosaic virus: comparison with the analogous 35S promoter from cauliflower mosaic virus and the regulated mannopine synthase promoter. Plant Mol Biol. 1990 Mar;14(3):433–443. doi: 10.1007/BF00028779. [DOI] [PubMed] [Google Scholar]
  22. Schreck R., Rieber P., Baeuerle P. A. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J. 1991 Aug;10(8):2247–2258. doi: 10.1002/j.1460-2075.1991.tb07761.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Vianello A., Macrì F. Generation of superoxide anion and hydrogen peroxide at the surface of plant cells. J Bioenerg Biomembr. 1991 Jun;23(3):409–423. doi: 10.1007/BF00771012. [DOI] [PubMed] [Google Scholar]
  24. Zhang S., Sheng J., Liu Y., Mehdy M. C. Fungal Elicitor-Induced Bean Proline-Rich Protein mRNA Down-Regulation Is Due to Destabilization That Is Transcription and Translation Dependent. Plant Cell. 1993 Sep;5(9):1089–1099. doi: 10.1105/tpc.5.9.1089. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES