Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1995 Sep;7(9):1395–1403. doi: 10.1105/tpc.7.9.1395

A potato Sus3 sucrose synthase gene contains a context-dependent 3' element and a leader intron with both positive and negative tissue-specific effects.

H Fu 1, S Y Kim 1, W D Park 1
PMCID: PMC160961  PMID: 8589624

Abstract

To examine which sequences are involved in regulating the potato sucrose synthase gene Sus3-65, we examined a series of deletion and substitution constructs in transgenic potato and tobacco plants. In a construct containing 3.9 kb of 5' flanking region, substitution of the native 3' sequence with the nopaline synthase 3' sequence and deletion of the leader intron did not significantly affect expression in vegetative tissues. However, in a construct containing only 320 bp of 5' flanking region, these changes had marked effects. Replacing the native 3' sequences with nopaline synthase 3' sequences caused a six- to 20-fold increase in expression in vascular tissue, and removing the leader intron almost completely abolished expression in potato plants. Surprisingly, removal of the leader intron from either the full-length construct or a construct containing only 320 bp of 5' flanking sequence reduced expression in vascular tissue of tobacco anthers at later stages of development but increased expression in pollen by more than 100-fold.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. A simple and general method for transferring genes into plants. Science. 1985 Mar 8;227(4691):1229–1231. doi: 10.1126/science.227.4691.1229. [DOI] [PubMed] [Google Scholar]
  2. Boggs R. T., Gregor P., Idriss S., Belote J. M., McKeown M. Regulation of sexual differentiation in D. melanogaster via alternative splicing of RNA from the transformer gene. Cell. 1987 Aug 28;50(5):739–747. doi: 10.1016/0092-8674(87)90332-1. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  4. Callis J., Fromm M., Walbot V. Introns increase gene expression in cultured maize cells. Genes Dev. 1987 Dec;1(10):1183–1200. doi: 10.1101/gad.1.10.1183. [DOI] [PubMed] [Google Scholar]
  5. Chopra S., Del-favero J., Dolferus R., Jacobs M. Sucrose synthase of Arabidopsis: genomic cloning and sequence characterization. Plant Mol Biol. 1992 Jan;18(1):131–134. doi: 10.1007/BF00018465. [DOI] [PubMed] [Google Scholar]
  6. Fu H., Kim S. Y., Park W. D. High-level tuber expression and sucrose inducibility of a potato Sus4 sucrose synthase gene require 5' and 3' flanking sequences and the leader intron. Plant Cell. 1995 Sep;7(9):1387–1394. doi: 10.1105/tpc.7.9.1387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fu H., Park W. D. Sink- and vascular-associated sucrose synthase functions are encoded by different gene classes in potato. Plant Cell. 1995 Sep;7(9):1369–1385. doi: 10.1105/tpc.7.9.1369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gillies S. D., Morrison S. L., Oi V. T., Tonegawa S. A tissue-specific transcription enhancer element is located in the major intron of a rearranged immunoglobulin heavy chain gene. Cell. 1983 Jul;33(3):717–728. doi: 10.1016/0092-8674(83)90014-4. [DOI] [PubMed] [Google Scholar]
  9. Goto K., Okada T. S., Kondoh H. Functional cooperation of lens-specific and nonspecific elements in the delta 1-crystallin enhancer. Mol Cell Biol. 1990 Mar;10(3):958–964. doi: 10.1128/mcb.10.3.958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jefferson R. A., Kavanagh T. A., Bevan M. W. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987 Dec 20;6(13):3901–3907. doi: 10.1002/j.1460-2075.1987.tb02730.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Koltunow A. M., Truettner J., Cox K. H., Wallroth M., Goldberg R. B. Different Temporal and Spatial Gene Expression Patterns Occur during Anther Development. Plant Cell. 1990 Dec;2(12):1201–1224. doi: 10.1105/tpc.2.12.1201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Konieczny S. F., Emerson C. P., Jr Complex regulation of the muscle-specific contractile protein (troponin I) gene. Mol Cell Biol. 1987 Sep;7(9):3065–3075. doi: 10.1128/mcb.7.9.3065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lerchl J., Geigenberger P., Stitt M., Sonnewald U. Impaired photoassimilate partitioning caused by phloem-specific removal of pyrophosphate can be complemented by a phloem-specific cytosolic yeast-derived invertase in transgenic plants. Plant Cell. 1995 Mar;7(3):259–270. doi: 10.1105/tpc.7.3.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lowell C. A., Tomlinson P. T., Koch K. E. Sucrose-metabolizing enzymes in transport tissues and adjacent sink structures in developing citrus fruit. Plant Physiol. 1989 Aug;90(4):1394–1402. doi: 10.1104/pp.90.4.1394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Maas C., Laufs J., Grant S., Korfhage C., Werr W. The combination of a novel stimulatory element in the first exon of the maize Shrunken-1 gene with the following intron 1 enhances reporter gene expression up to 1000-fold. Plant Mol Biol. 1991 Feb;16(2):199–207. doi: 10.1007/BF00020552. [DOI] [PubMed] [Google Scholar]
  16. Martin T., Frommer W. B., Salanoubat M., Willmitzer L. Expression of an Arabidopsis sucrose synthase gene indicates a role in metabolization of sucrose both during phloem loading and in sink organs. Plant J. 1993 Aug;4(2):367–377. doi: 10.1046/j.1365-313x.1993.04020367.x. [DOI] [PubMed] [Google Scholar]
  17. Nolte K. D., Koch K. E. Companion-Cell Specific Localization of Sucrose Synthase in Zones of Phloem Loading and Unloading. Plant Physiol. 1993 Mar;101(3):899–905. doi: 10.1104/pp.101.3.899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Oshima R. G., Abrams L., Kulesh D. Activation of an intron enhancer within the keratin 18 gene by expression of c-fos and c-jun in undifferentiated F9 embryonal carcinoma cells. Genes Dev. 1990 May;4(5):835–848. doi: 10.1101/gad.4.5.835. [DOI] [PubMed] [Google Scholar]
  19. Rio D. C. Regulation of Drosophila P element transposition. Trends Genet. 1991 Sep;7(9):282–287. doi: 10.1016/0168-9525(91)90309-E. [DOI] [PubMed] [Google Scholar]
  20. Rossi P., de Crombrugghe B. Identification of a cell-specific transcriptional enhancer in the first intron of the mouse alpha 2 (type I) collagen gene. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5590–5594. doi: 10.1073/pnas.84.16.5590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Shaw J. R., Ferl R. J., Baier J., St Clair D., Carson C., McCarty D. R., Hannah L. C. Structural features of the maize sus1 gene and protein. Plant Physiol. 1994 Dec;106(4):1659–1665. doi: 10.1104/pp.106.4.1659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tomlinson P. T., Duke E. R., Nolte K. D., Koch K. E. Sucrose synthase and invertase in isolated vascular bundles. Plant Physiol. 1991 Nov;97(3):1249–1252. doi: 10.1104/pp.97.3.1249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Vasil V., Clancy M., Ferl R. J., Vasil I. K., Hannah L. C. Increased gene expression by the first intron of maize shrunken-1 locus in grass species. Plant Physiol. 1989 Dec;91(4):1575–1579. doi: 10.1104/pp.91.4.1575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wang M. B., Boulter D., Gatehouse J. A. A complete sequence of the rice sucrose synthase-1 (RSs1) gene. Plant Mol Biol. 1992 Aug;19(5):881–885. doi: 10.1007/BF00027086. [DOI] [PubMed] [Google Scholar]
  25. Yang N. S., Russell D. Maize sucrose synthase-1 promoter directs phloem cell-specific expression of Gus gene in transgenic tobacco plants. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4144–4148. doi: 10.1073/pnas.87.11.4144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Yu W. P., Wang A. Y., Juang R. H., Sung H. Y., Su J. C. Isolation and sequences of rice sucrose synthase cDNA and genomic DNA. Plant Mol Biol. 1992 Jan;18(1):139–142. doi: 10.1007/BF00018467. [DOI] [PubMed] [Google Scholar]
  27. Zrenner R., Salanoubat M., Willmitzer L., Sonnewald U. Evidence of the crucial role of sucrose synthase for sink strength using transgenic potato plants (Solanum tuberosum L.). Plant J. 1995 Jan;7(1):97–107. doi: 10.1046/j.1365-313x.1995.07010097.x. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES