Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Aug;111(4):1085–1096. doi: 10.1104/pp.111.4.1085

Complexity and Genetic Variability of Heat-Shock Protein Expression in Isolated Maize Microspores.

J L Magnard 1, P Vergne 1, C Dumas 1
PMCID: PMC160984  PMID: 12226349

Abstract

The expression of heat-shock proteins (HSPs) in isolated maize (Zea mays L.) microspores has been investigated using high-resolution two-dimensional electrophoresis coupled to immunodetection and fluorography of in vivo synthesized proteins. To this end, homogeneous and viable populations of microspores have been purified in sufficient amounts for molecular analysis from plants grown in controlled conditions. Appropriate conditions for thermal stress application have been defined. The analysis revealed that isolated microspores from maize display a classical heat-shock response characterized by the repression of the normal protein synthesis and the expression of a set of HSPs. A high complexity of the response was demonstrated, with numerous different HSPs being resolved in each known major HSP molecular weight class. However, the extent of this heat-shock response is limited in that some of these HSPs do not accumulate at high levels following temperature elevation. Comparative analysis of the heat-shock responses of microspores isolated from five genotypes demonstrated high levels of genetic variability. Furthermore, many HSPs were detected in microspores at control temperature, indicating a possible involvement of these proteins in pollen development at stages close to first pollen mitosis.

Full Text

The Full Text of this article is available as a PDF (4.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander M. P. Differential staining of aborted and nonaborted pollen. Stain Technol. 1969 May;44(3):117–122. doi: 10.3109/10520296909063335. [DOI] [PubMed] [Google Scholar]
  2. Atkinson B. G., Raizada M., Bouchard R. A., Frappier R. H., Walden D. B. The independent stage-specific expression of the 18-kDa heat shock protein genes during microsporogenesis in Zea mays L. Dev Genet. 1993;14(1):15–26. doi: 10.1002/dvg.1020140104. [DOI] [PubMed] [Google Scholar]
  3. Baszczynski C. L., Walden D. B., Atkinson B. G. Regulation of gene expression in corn (Zea Mays L.) by heat shock. Can J Biochem. 1982 May;60(5):569–579. doi: 10.1139/o82-070. [DOI] [PubMed] [Google Scholar]
  4. Bates E. E., Vergne P., Dumas C. Analysis of the cytosolic hsp70 gene family in Zea mays. Plant Mol Biol. 1994 Aug;25(5):909–916. doi: 10.1007/BF00028885. [DOI] [PubMed] [Google Scholar]
  5. Coca M. A., Almoguera C., Jordano J. Expression of sunflower low-molecular-weight heat-shock proteins during embryogenesis and persistence after germination: localization and possible functional implications. Plant Mol Biol. 1994 Jun;25(3):479–492. doi: 10.1007/BF00043876. [DOI] [PubMed] [Google Scholar]
  6. Cooper P., Ho T. H., Hauptmann R. M. Tissue specificity of the heat-shock response in maize. Plant Physiol. 1984 Jun;75(2):431–441. doi: 10.1104/pp.75.2.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Derocher A. E., Helm K. W., Lauzon L. M., Vierling E. Expression of a Conserved Family of Cytoplasmic Low Molecular Weight Heat Shock Proteins during Heat Stress and Recovery. Plant Physiol. 1991 Aug;96(4):1038–1047. doi: 10.1104/pp.96.4.1038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dietrich P. S., Bouchard R. A., Casey E. S., Sinibaldi R. M. Isolation and characterization of a small heat shock protein gene from maize. Plant Physiol. 1991 Aug;96(4):1268–1276. doi: 10.1104/pp.96.4.1268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Duck N. B., Folk W. R. Hsp70 heat shock protein cognate is expressed and stored in developing tomato pollen. Plant Mol Biol. 1994 Nov;26(4):1031–1039. doi: 10.1007/BF00040686. [DOI] [PubMed] [Google Scholar]
  10. Dupuis I., Dumas C. Influence of Temperature Stress on in Vitro Fertilization and Heat Shock Protein Synthesis in Maize (Zea mays L.) Reproductive Tissues. Plant Physiol. 1990 Oct;94(2):665–670. doi: 10.1104/pp.94.2.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Eady C., Lindsey K., Twell D. The Significance of Microspore Division and Division Symmetry for Vegetative Cell-Specific Transcription and Generative Cell Differentiation. Plant Cell. 1995 Jan;7(1):65–74. doi: 10.1105/tpc.7.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gagliardi D., Breton C., Chaboud A., Vergne P., Dumas C. Expression of heat shock factor and heat shock protein 70 genes during maize pollen development. Plant Mol Biol. 1995 Nov;29(4):841–856. doi: 10.1007/BF00041173. [DOI] [PubMed] [Google Scholar]
  13. Gething M. J., Sambrook J. Protein folding in the cell. Nature. 1992 Jan 2;355(6355):33–45. doi: 10.1038/355033a0. [DOI] [PubMed] [Google Scholar]
  14. Goping I. S., Frappier J. R., Walden D. B., Atkinson B. G. Sequence, identification and characterization of cDNAs encoding two different members of the 18 kDa heat shock family of Zea mays L. Plant Mol Biol. 1991 Apr;16(4):699–711. doi: 10.1007/BF00023434. [DOI] [PubMed] [Google Scholar]
  15. Greyson R. I., Yang Z., Bouchard R. A., Frappier J. R., Atkinson B. G., Banasikowska E., Walden D. B. Maize seedlings show cell-specific responses to heat shock as revealed by expression of RNA and protein. Dev Genet. 1996;18(3):244–253. doi: 10.1002/(SICI)1520-6408(1996)18:3<244::AID-DVG5>3.0.CO;2-9. [DOI] [PubMed] [Google Scholar]
  16. Heslop-Harrison J., Heslop-Harrison Y. Evaluation of pollen viability by enzymatically induced fluorescence; intracellular hydrolysis of fluorescein diacetate. Stain Technol. 1970 May;45(3):115–120. doi: 10.3109/10520297009085351. [DOI] [PubMed] [Google Scholar]
  17. Marrs K. A., Casey E. S., Capitant S. A., Bouchard R. A., Dietrich P. S., Mettler I. J., Sinibaldi R. M. Characterization of two maize HSP90 heat shock protein genes: expression during heat shock, embryogenesis, and pollen development. Dev Genet. 1993;14(1):27–41. doi: 10.1002/dvg.1020140105. [DOI] [PubMed] [Google Scholar]
  18. Morimoto R. I., Sarge K. D., Abravaya K. Transcriptional regulation of heat shock genes. A paradigm for inducible genomic responses. J Biol Chem. 1992 Nov 5;267(31):21987–21990. [PubMed] [Google Scholar]
  19. Prasad T. K., Stewart C. R. cDNA clones encoding Arabidopsis thaliana and Zea mays mitochondrial chaperonin HSP60 and gene expression during seed germination and heat shock. Plant Mol Biol. 1992 Mar;18(5):873–885. doi: 10.1007/BF00019202. [DOI] [PubMed] [Google Scholar]
  20. Tsugeki R., Mori H., Nishimura M. Purification, cDNA cloning and Northern-blot analysis of mitochondrial chaperonin 60 from pumpkin cotyledons. Eur J Biochem. 1992 Oct 1;209(1):453–458. doi: 10.1111/j.1432-1033.1992.tb17309.x. [DOI] [PubMed] [Google Scholar]
  21. Winter J., Sinibaldi R. The expression of heat shock protein and cognate genes during plant development. Results Probl Cell Differ. 1991;17:85–105. doi: 10.1007/978-3-540-46712-0_7. [DOI] [PubMed] [Google Scholar]
  22. Wolgemuth D. J., Gruppi C. M. Heat shock gene expression during mammalian gametogenesis and early embryogenesis. Results Probl Cell Differ. 1991;17:138–152. doi: 10.1007/978-3-540-46712-0_10. [DOI] [PubMed] [Google Scholar]
  23. Zabaleta E., Assad N., Oropeza A., Salerno G., Herrera-Estrella L. Expression of one of the members of the Arabidopsis chaperonin 60 beta gene family is developmentally regulated and wound-repressible. Plant Mol Biol. 1994 Jan;24(1):195–202. doi: 10.1007/BF00040585. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES