Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Aug;111(4):1135–1144. doi: 10.1104/pp.111.4.1135

Proteolytic processing of class IV chitinase in the compatible interaction of bean roots with Fusarium solani.

J Lange 1, U Mohr 1, A Wiemken 1, T Boller 1, R Vögeli-Lange 1
PMCID: PMC160989  PMID: 8756497

Abstract

Three chitinase isoenzymes, PvChiE, PvChiF, and PvChiG (molecular masses 29, 28, 27 kD, respectively), were purified from bean (Phaseolus vulgaris L. cv Saxa) roots infected with the fungal pathogen Fusarium solani f. sp. phaseoli, and their amino acid sequence was partially determined. All sequences from all three isoenzymes exactly matched deduced amino acid sequences of the bean class IV chitinase PvChi4, formerly called PR4. The N terminus of PvChif mapped to the hinge region, and the N terminus of PvChiG mapped to the catalytic domain of PvChi4. The N terminus of PvChiE was blocked. The appearance of PvChiE, PvChiF, and PvChiG correlated with an increase in protease activity in infected roots, and they could be generated in vitro by mixing extracts with high protease activity with extracts containing high amounts of PvChi4. Extracts from infected roots prepared in the presence of protease inhibitors also contained the processed forms of PvChi4, indicating that processing occurred in planta and not as an artifact of extraction. Processing of PvChi4 was not detected in incompatible interactions with a nonhost strain of F. solani and in symbiotic interactions with Glomus mosseae, and thus may be important only in compatible interactions with F. solani.

Full Text

The Full Text of this article is available as a PDF (2.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blaak H., Schrempf H. Binding and substrate specificities of a Streptomyces olivaceoviridis chitinase in comparison with its proteolytically processed form. Eur J Biochem. 1995 Apr 1;229(1):132–139. doi: 10.1111/j.1432-1033.1995.tb20447.x. [DOI] [PubMed] [Google Scholar]
  2. Bowles D. J. Defense-related proteins in higher plants. Annu Rev Biochem. 1990;59:873–907. doi: 10.1146/annurev.bi.59.070190.004301. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Fernandez J., Andrews L., Mische S. M. An improved procedure for enzymatic digestion of polyvinylidene difluoride-bound proteins for internal sequence analysis. Anal Biochem. 1994 Apr;218(1):112–117. doi: 10.1006/abio.1994.1148. [DOI] [PubMed] [Google Scholar]
  5. Jenö P., Mini T., Moes S., Hintermann E., Horst M. Internal sequences from proteins digested in polyacrylamide gels. Anal Biochem. 1995 Jan 1;224(1):75–82. doi: 10.1006/abio.1995.1010. [DOI] [PubMed] [Google Scholar]
  6. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  7. Lee H. I., Broekaert W. F., Raikhel N. V., Lee H. Co- and post-translational processing of the hevein preproprotein of latex of the rubber tree (Hevea brasiliensis) J Biol Chem. 1991 Aug 25;266(24):15944–15948. [PubMed] [Google Scholar]
  8. Lerner D. R., Raikhel N. V. The gene for stinging nettle lectin (Urtica dioica agglutinin) encodes both a lectin and a chitinase. J Biol Chem. 1992 Jun 5;267(16):11085–11091. [PubMed] [Google Scholar]
  9. Lindstrom J. T., Belanger F. C. Purification and Characterization of an Endophytic Fungal Proteinase That Is Abundantly Expressed in the Infected Host Grass. Plant Physiol. 1994 Sep;106(1):7–16. doi: 10.1104/pp.106.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mauch F., Mauch-Mani B., Boller T. Antifungal Hydrolases in Pea Tissue : II. Inhibition of Fungal Growth by Combinations of Chitinase and beta-1,3-Glucanase. Plant Physiol. 1988 Nov;88(3):936–942. doi: 10.1104/pp.88.3.936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Morita S., Kuriyama M., Maejima K., Kitano K. Cloning and nucleotide sequence of the alkaline protease gene from Fusarium sp. S-19-5 and expression in Saccharomyces cerevisiae. Biosci Biotechnol Biochem. 1994 Apr;58(4):621–626. doi: 10.1271/bbb.58.621. [DOI] [PubMed] [Google Scholar]
  12. Neale A. D., Wahleithner J. A., Lund M., Bonnett H. T., Kelly A., Meeks-Wagner D. R., Peacock W. J., Dennis E. S. Chitinase, beta-1,3-glucanase, osmotin, and extensin are expressed in tobacco explants during flower formation. Plant Cell. 1990 Jul;2(7):673–684. doi: 10.1105/tpc.2.7.673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nielsen K. K., Bojsen K., Roepstorff P., Mikkelsen J. D. A hydroxyproline-containing class IV chitinase of sugar beet is glycosylated with xylose. Plant Mol Biol. 1994 May;25(2):241–257. doi: 10.1007/BF00023241. [DOI] [PubMed] [Google Scholar]
  14. Ragster L. V., Chrispeels M. J. Azocoll-digesting Proteinases in Soybean Leaves: Characteristics and Changes during Leaf Maturation and Senescence. Plant Physiol. 1979 Nov;64(5):857–862. doi: 10.1104/pp.64.5.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rodrigo I., Vera P., Conejero V. Degradation of tomato pathogenesis-related proteins by an endogenous 37-kDa aspartyl endoproteinase. Eur J Biochem. 1989 Oct 1;184(3):663–669. doi: 10.1111/j.1432-1033.1989.tb15064.x. [DOI] [PubMed] [Google Scholar]
  16. Sela-Buurlage M. B., Ponstein A. S., Bres-Vloemans S. A., Melchers L. S., Van Den Elzen PJM., Cornelissen BJC. Only Specific Tobacco (Nicotiana tabacum) Chitinases and [beta]-1,3-Glucanases Exhibit Antifungal Activity. Plant Physiol. 1993 Mar;101(3):857–863. doi: 10.1104/pp.101.3.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sticher L., Hofsteenge J., Neuhaus J. M., Boller T., Meins F., Jr Posttranslational processing of a new class of hydroxyproline-containing proteins. Prolyl hydroxylation and C-terminal cleavage of tobacco (Nicotiana tabacum) vacuolar chitinase. Plant Physiol. 1993 Apr;101(4):1239–1247. doi: 10.1104/pp.101.4.1239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Trudel J., Asselin A. Detection of chitinase activity after polyacrylamide gel electrophoresis. Anal Biochem. 1989 May 1;178(2):362–366. doi: 10.1016/0003-2697(89)90653-2. [DOI] [PubMed] [Google Scholar]
  20. Watanabe T., Oyanagi W., Suzuki K., Tanaka H. Chitinase system of Bacillus circulans WL-12 and importance of chitinase A1 in chitin degradation. J Bacteriol. 1990 Jul;172(7):4017–4022. doi: 10.1128/jb.172.7.4017-4022.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wemmer T., Kaufmann H., Kirch H. H., Schneider K., Lottspeich F., Thompson R. D. The most abundant soluble basic protein of the stylar transmitting tract in potato (Solanum tuberosum L.) is an endochitinase. Planta. 1994;194(2):264–273. [PubMed] [Google Scholar]
  22. van der Wilden W., Segers J. H., Chrispeels M. J. Cell Walls of Phaseolus vulgaris Leaves Contain the Azocoll-Digesting Proteinase. Plant Physiol. 1983 Nov;73(3):576–578. doi: 10.1104/pp.73.3.576. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES