Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Aug;111(4):1161–1167. doi: 10.1104/pp.111.4.1161

A multiple-stimuli-responsive as-1-related element of parA gene confers responsiveness to cadmium but not to copper.

M Kusaba 1, Y Takahashi 1, T Nagata 1
PMCID: PMC160992  PMID: 8756498

Abstract

The expression of parA, an auxin-regulated gene expressed during the culture of tobacco (Nicotiana tabacum L.) mesophyll protoplasts, is induced by cadmium. To identify the cadmium-responsive element, we examined the parA promoter using the GUS reporter gene. Cadmium responsiveness was retained in a 5' deletion of the parA promoter to -78 bp, but it was nullified by further deletion to -49bp, which implies that the region -49 to -78 bp contained a cadmium-responsive element. This region contains a sequence similar to as-1, an enhancer sequence from the cauliflower mosaic virus 35S RNA promoter that binds the nuclear factor ASF-1. We named the sequence in the parA promoter pas. Gel-shift assays revealed that pas and as-1 compete for the same DNA-binding nuclear protein(s). Since pentamers of either pas and as-1 were able to confer cadmium responsiveness on a minimal promoter but mutant as-1 was not, we propose that pas and as-1 are involved in cadmium-responsive gene expression. Neither pas nor as-1 conferred responsiveness to copper. The specificity of this response, involving the function of as-1-related elements including pas, is discussed.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Czarnecka E., Nagao R. T., Key J. L., Gurley W. B. Characterization of Gmhsp26-A, a stress gene encoding a divergent heat shock protein of soybean: heavy-metal-induced inhibition of intron processing. Mol Cell Biol. 1988 Mar;8(3):1113–1122. doi: 10.1128/mcb.8.3.1113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ellis J. G., Tokuhisa J. G., Llewellyn D. J., Bouchez D., Singh K., Dennis E. S., Peacock W. J. Does the ocs-element occur as a functional component of the promoters of plant genes? Plant J. 1993 Sep;4(3):433–443. doi: 10.1046/j.1365-313x.1993.04030433.x. [DOI] [PubMed] [Google Scholar]
  3. Evans I. M., Gatehouse L. N., Gatehouse J. A., Robinson N. J., Croy R. R. A gene from pea (Pisum sativum L.) with homology to metallothionein genes. FEBS Lett. 1990 Mar 12;262(1):29–32. doi: 10.1016/0014-5793(90)80145-9. [DOI] [PubMed] [Google Scholar]
  4. Fürst P., Hu S., Hackett R., Hamer D. Copper activates metallothionein gene transcription by altering the conformation of a specific DNA binding protein. Cell. 1988 Nov 18;55(4):705–717. doi: 10.1016/0092-8674(88)90229-2. [DOI] [PubMed] [Google Scholar]
  5. Hagen G., Uhrhammer N., Guilfoyle T. J. Regulation of expression of an auxin-induced soybean sequence by cadmium. J Biol Chem. 1988 May 5;263(13):6442–6446. [PubMed] [Google Scholar]
  6. Hamer D. H. Metallothionein. Annu Rev Biochem. 1986;55:913–951. doi: 10.1146/annurev.bi.55.070186.004405. [DOI] [PubMed] [Google Scholar]
  7. Kawata T., Imada T., Shiraishi H., Okada K., Shimura Y., Iwabuchi M. A cDNA clone encoding HBP-1b homologue in Arabidopsis thaliana. Nucleic Acids Res. 1992 Mar 11;20(5):1141–1141. doi: 10.1093/nar/20.5.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kim Y., Buckley K., Costa M. A., An G. A 20 nucleotide upstream element is essential for the nopaline synthase (nos) promoter activity. Plant Mol Biol. 1994 Jan;24(1):105–117. doi: 10.1007/BF00040578. [DOI] [PubMed] [Google Scholar]
  9. Lam E., Benfey P. N., Gilmartin P. M., Fang R. X., Chua N. H. Site-specific mutations alter in vitro factor binding and change promoter expression pattern in transgenic plants. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7890–7894. doi: 10.1073/pnas.86.20.7890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lam E., Chua N. H. Tetramer of a 21-base pair synthetic element confers seed expression and transcriptional enhancement in response to water stress and abscisic acid. J Biol Chem. 1991 Sep 15;266(26):17131–17135. [PubMed] [Google Scholar]
  11. Lam E., Katagiri F., Chua N. H. Plant nuclear factor ASF-1 binds to an essential region of the nopaline synthase promoter. J Biol Chem. 1990 Jun 15;265(17):9909–9913. [PubMed] [Google Scholar]
  12. Lescure A. M., Proudhon D., Pesey H., Ragland M., Theil E. C., Briat J. F. Ferritin gene transcription is regulated by iron in soybean cell cultures. Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):8222–8226. doi: 10.1073/pnas.88.18.8222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Liu X., Lam E. Two binding sites for the plant transcription factor ASF-1 can respond to auxin treatments in transgenic tobacco. J Biol Chem. 1994 Jan 7;269(1):668–675. [PubMed] [Google Scholar]
  14. Mett V. L., Lochhead L. P., Reynolds P. H. Copper-controllable gene expression system for whole plants. Proc Natl Acad Sci U S A. 1993 May 15;90(10):4567–4571. doi: 10.1073/pnas.90.10.4567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Miao Z. H., Liu X., Lam E. TGA3 is a distinct member of the TGA family of bZIP transcription factors in Arabidopsis thaliana. Plant Mol Biol. 1994 Apr;25(1):1–11. doi: 10.1007/BF00024193. [DOI] [PubMed] [Google Scholar]
  16. Qin X. F., Holuigue L., Horvath D. M., Chua N. H. Immediate early transcription activation by salicylic acid via the cauliflower mosaic virus as-1 element. Plant Cell. 1994 Jun;6(6):863–874. doi: 10.1105/tpc.6.6.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rauser W. E. Phytochelatins and related peptides. Structure, biosynthesis, and function. Plant Physiol. 1995 Dec;109(4):1141–1149. doi: 10.1104/pp.109.4.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Schindler U., Beckmann H., Cashmore A. R. TGA1 and G-box binding factors: two distinct classes of Arabidopsis leucine zipper proteins compete for the G-box-like element TGACGTGG. Plant Cell. 1992 Oct;4(10):1309–1319. doi: 10.1105/tpc.4.10.1309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Takahashi Y., Kuroda H., Tanaka T., Machida Y., Takebe I., Nagata T. Isolation of an auxin-regulated gene cDNA expressed during the transition from G0 to S phase in tobacco mesophyll protoplasts. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9279–9283. doi: 10.1073/pnas.86.23.9279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Takahashi Y., Kusaba M., Hiraoka Y., Nagata T. Characterization of the auxin-regulated par gene from tobacco mesophyll protoplasts. Plant J. 1991 Nov;1(3):327–332. doi: 10.1046/j.1365-313x.1991.t01-2-00999.x. [DOI] [PubMed] [Google Scholar]
  21. Takahashi Y., Sakai T., Ishida S., Nagata T. Identification of auxin-responsive elements of parB and their expression in apices of shoot and root. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6359–6363. doi: 10.1073/pnas.92.14.6359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tommey A. M., Shi J., Lindsay W. P., Urwin P. E., Robinson N. J. Expression of the pea gene PSMTA in E. coli. Metal-binding properties of the expressed protein. FEBS Lett. 1991 Nov 4;292(1-2):48–52. doi: 10.1016/0014-5793(91)80831-m. [DOI] [PubMed] [Google Scholar]
  23. Zhang B., Singh K. B. ocs element promoter sequences are activated by auxin and salicylic acid in Arabidopsis. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2507–2511. doi: 10.1073/pnas.91.7.2507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Zhou J., Goldsbrough P. B. Functional homologs of fungal metallothionein genes from Arabidopsis. Plant Cell. 1994 Jun;6(6):875–884. doi: 10.1105/tpc.6.6.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. de Miranda J. R., Thomas M. A., Thurman D. A., Tomsett A. B. Metallothionein genes from the flowering plant Mimulus guttatus. FEBS Lett. 1990 Jan 29;260(2):277–280. doi: 10.1016/0014-5793(90)80122-y. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES