Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Aug;111(4):1177–1181. doi: 10.1104/pp.111.4.1177

Water-Deficit Tolerance and Field Performance of Transgenic Alfalfa Overexpressing Superoxide Dismutase.

B D McKersie 1, S R Bowley 1, E Harjanto 1, O Leprince 1
PMCID: PMC160994  PMID: 12226355

Abstract

Transgenic alfalfa (Medicago sativa) expressing Mn-superoxide dismutase cDNA tended to have reduced injury from water-deficit stress as determined by chlorophyll fluorescence, electrolyte leakage, and regrowth from crowns. A 3-year field trial indicated that yield and survival of transgenic plants were significantly improved, supporting the hypothesis that tolerance of oxidative stress is important in adaptation to field environments.

Full Text

The Full Text of this article is available as a PDF (568.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen R. D. Dissection of Oxidative Stress Tolerance Using Transgenic Plants. Plant Physiol. 1995 Apr;107(4):1049–1054. doi: 10.1104/pp.107.4.1049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bowler C., Slooten L., Vandenbranden S., De Rycke R., Botterman J., Sybesma C., Van Montagu M., Inzé D. Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBO J. 1991 Jul;10(7):1723–1732. doi: 10.1002/j.1460-2075.1991.tb07696.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  4. Chen Z., Silva H., Klessig D. F. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science. 1993 Dec 17;262(5141):1883–1886. doi: 10.1126/science.8266079. [DOI] [PubMed] [Google Scholar]
  5. Giannopolitis C. N., Ries S. K. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol. 1977 Feb;59(2):309–314. doi: 10.1104/pp.59.2.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gupta A. S., Heinen J. L., Holaday A. S., Burke J. J., Allen R. D. Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1629–1633. doi: 10.1073/pnas.90.4.1629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gupta A. S., Webb R. P., Holaday A. S., Allen R. D. Overexpression of Superoxide Dismutase Protects Plants from Oxidative Stress (Induction of Ascorbate Peroxidase in Superoxide Dismutase-Overexpressing Plants). Plant Physiol. 1993 Dec;103(4):1067–1073. doi: 10.1104/pp.103.4.1067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Levine A., Tenhaken R., Dixon R., Lamb C. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell. 1994 Nov 18;79(4):583–593. doi: 10.1016/0092-8674(94)90544-4. [DOI] [PubMed] [Google Scholar]
  9. McKersie B. D., Chen Y., de Beus M., Bowley S. R., Bowler C., Inzé D., D'Halluin K., Botterman J. Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.). Plant Physiol. 1993 Dec;103(4):1155–1163. doi: 10.1104/pp.103.4.1155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mehdy M. C. Active Oxygen Species in Plant Defense against Pathogens. Plant Physiol. 1994 Jun;105(2):467–472. doi: 10.1104/pp.105.2.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Pitcher L. H., Brennan E., Hurley A., Dunsmuir P., Tepperman J. M., Zilinskas B. A. Overproduction of petunia chloroplastic copper/zinc superoxide dismutase does not confer ozone tolerance in transgenic tobacco. Plant Physiol. 1991 Sep;97(1):452–455. doi: 10.1104/pp.97.1.452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Prasad T. K., Anderson M. D., Martin B. A., Stewart C. R. Evidence for Chilling-Induced Oxidative Stress in Maize Seedlings and a Regulatory Role for Hydrogen Peroxide. Plant Cell. 1994 Jan;6(1):65–74. doi: 10.1105/tpc.6.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Senaratna T., McKersie B. D., Stinson R. H. Antioxidant levels in germinating soybean seed axes in relation to free radical and dehydration tolerance. Plant Physiol. 1985 May;78(1):168–171. doi: 10.1104/pp.78.1.168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Senaratna T., McKersie B. D., Stinson R. H. Simulation of dehydration injury to membranes from soybean axes by free radicals. Plant Physiol. 1985 Feb;77(2):472–474. doi: 10.1104/pp.77.2.472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Spychalla J. P., Desborough S. L. Superoxide Dismutase, Catalase, and alpha-Tocopherol Content of Stored Potato Tubers. Plant Physiol. 1990 Nov;94(3):1214–1218. doi: 10.1104/pp.94.3.1214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Stone J. M., Palta J. P., Bamberg J. B., Weiss L. S., Harbage J. F. Inheritance of freezing resistance in tuber-bearing Solanum species: evidence for independent genetic control of nonacclimated freezing tolerance and cold acclimation capacity. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7869–7873. doi: 10.1073/pnas.90.16.7869. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES