Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Aug;111(4):1183–1190. doi: 10.1104/pp.111.4.1183

Degradation pattern of photosystem II reaction center protein D1 in intact leaves. The major photoinhibition-induced cleavage site in D1 polypeptide is located amino terminally of the DE loop.

R Kettunen 1, E Tyystjärvi 1, E M Aro 1
PMCID: PMC160995  PMID: 8756500

Abstract

Photoinhibition-induced degradation of the D1 protein of the photosystem II reaction center was studied in intact pumpkin (Cucurbita pepo L.) leaves. Photoinhibition was observed to cause the cleavage of the D1 protein at two distinct sites. The main cleavage generated an 18-kD N-terminal and a 20-kD C-terminal degradation fragment of the D1 protein. this cleavage site was mapped to be located clearly N terminally of the DE loop. The other, less-frequent cleavage occurred at the DE loop and produced the well-documented 23-kD, N-terminal D1 degradation product. Furthermore, the 23-kD, N-terminal D1 fragment appears to be phosphorylated and can be detected only under severe photoinhibition in vivo. Comparison of the D1 degradation pattern after in vivo photoinhibition to that after in vitro acceptor-side and donor-side photoinhibition, performed with isolated photosystem II core particles, gives indirect evidence in support of donor-side photoinhibition in intact leaves.

Full Text

The Full Text of this article is available as a PDF (2.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aro E. M., Kettunen R., Tyystjärvi E. ATP and light regulate D1 protein modification and degradation. Role of D1* in photoinhibition. FEBS Lett. 1992 Feb 3;297(1-2):29–33. doi: 10.1016/0014-5793(92)80320-g. [DOI] [PubMed] [Google Scholar]
  3. Aro E. M., McCaffery S., Anderson J. M. Photoinhibition and D1 Protein Degradation in Peas Acclimated to Different Growth Irradiances. Plant Physiol. 1993 Nov;103(3):835–843. doi: 10.1104/pp.103.3.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barbato R., Friso G., Rigoni F., Frizzo A., Giacometti G. M. Characterization of a 41 kDa photoinhibition adduct in isolated photosystem II reaction centres. FEBS Lett. 1992 Sep 7;309(2):165–169. doi: 10.1016/0014-5793(92)81087-3. [DOI] [PubMed] [Google Scholar]
  5. Barbato R., Shipton C. A., Giacometti G. M., Barber J. New evidence suggests that the initial photoinduced cleavage of the D1-protein may not occur near the PEST sequence. FEBS Lett. 1991 Sep 23;290(1-2):162–166. doi: 10.1016/0014-5793(91)81250-c. [DOI] [PubMed] [Google Scholar]
  6. Callahan F. E., Ghirardi M. L., Sopory S. K., Mehta A. M., Edelman M., Mattoo A. K. A novel metabolic form of the 32 kDa-D1 protein in the grana-localized reaction center of photosystem II. J Biol Chem. 1990 Sep 15;265(26):15357–15360. [PubMed] [Google Scholar]
  7. De Las Rivas J., Andersson B., Barber J. Two sites of primary degradation of the D1-protein induced by acceptor or donor side photo-inhibition in photosystem II core complexes. FEBS Lett. 1992 Apr 27;301(3):246–252. doi: 10.1016/0014-5793(92)80250-k. [DOI] [PubMed] [Google Scholar]
  8. Kettunen R., Tyystjärvi E., Aro E. M. D1 protein degradation during photoinhibition of intact leaves. A modification of the D1 protein precedes degradation. FEBS Lett. 1991 Sep 23;290(1-2):153–156. doi: 10.1016/0014-5793(91)81247-6. [DOI] [PubMed] [Google Scholar]
  9. Kyle D. J., Ohad I., Arntzen C. J. Membrane protein damage and repair: Selective loss of a quinone-protein function in chloroplast membranes. Proc Natl Acad Sci U S A. 1984 Jul;81(13):4070–4074. doi: 10.1073/pnas.81.13.4070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  11. Marder J. B., Goloubinoff P., Edelman M. Molecular architecture of the rapidly metabolized 32-kilodalton protein of photosystem II. Indications for COOH-terminal processing of a chloroplast membrane polypeptide. J Biol Chem. 1984 Mar 25;259(6):3900–3908. [PubMed] [Google Scholar]
  12. Mattoo A. K., Pick U., Hoffman-Falk H., Edelman M. The rapidly metabolized 32,000-dalton polypeptide of the chloroplast is the "proteinaceous shield" regulating photosystem II electron transport and mediating diuron herbicide sensitivity. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1572–1576. doi: 10.1073/pnas.78.3.1572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Russell A. W., Critchley C., Robinson S. A., Franklin L. A., Seaton GGR., Chow W. S., Anderson J. M., Osmond C. B. Photosystem II Regulation and Dynamics of the Chloroplast D1 Protein in Arabidopsis Leaves during Photosynthesis and Photoinhibition. Plant Physiol. 1995 Mar;107(3):943–952. doi: 10.1104/pp.107.3.943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Salter A. H., Virgin I., Hagman A., Andersson B. On the molecular mechanism of light-induced D1 protein degradation in photosystem II core particles. Biochemistry. 1992 Apr 28;31(16):3990–3998. doi: 10.1021/bi00131a014. [DOI] [PubMed] [Google Scholar]
  15. Shipton C. A., Barber J. Characterisation of photoinduced breakdown of the D1-polypeptide in isolated reaction centres of Photosystem II. Biochim Biophys Acta. 1992 Jan 30;1099(1):85–90. [PubMed] [Google Scholar]
  16. Shipton C. A., Barber J. In vivo and in vitro photoinhibition reactions generate similar degradation fragments of D1 and D2 photosystem-II reaction-centre proteins. Eur J Biochem. 1994 Mar 15;220(3):801–808. doi: 10.1111/j.1432-1033.1994.tb18682.x. [DOI] [PubMed] [Google Scholar]
  17. Shipton C. A., Barber J. Photoinduced degradation of the D1 polypeptide in isolated reaction centers of photosystem II: evidence for an autoproteolytic process triggered by the oxidizing side of the photosystem. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6691–6695. doi: 10.1073/pnas.88.15.6691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tyystjärvi E., Ali-Yrkkö K., Kettunen R., Aro E. M. Slow degradation of the d1 protein is related to the susceptibility of low-light-grown pumpkin plants to photoinhibition. Plant Physiol. 1992 Nov;100(3):1310–1317. doi: 10.1104/pp.100.3.1310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Tyystjärvi E., Aro E. M. The rate constant of photoinhibition, measured in lincomycin-treated leaves, is directly proportional to light intensity. Proc Natl Acad Sci U S A. 1996 Mar 5;93(5):2213–2218. doi: 10.1073/pnas.93.5.2213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tyystjärvi T., Aro E. M., Jansson C., Mäenpä P. Changes of amino acid sequence in PEST-like area and QEEET motif affect degradation rate of D1 polypeptide in photosystem II. Plant Mol Biol. 1994 Jun;25(3):517–526. doi: 10.1007/BF00043879. [DOI] [PubMed] [Google Scholar]
  21. de Vitry C., Diner B. A., Popo J. L. Photosystem II particles from Chlamydomonas reinhardtii. Purification, molecular weight, small subunit composition, and protein phosphorylation. J Biol Chem. 1991 Sep 5;266(25):16614–16621. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES