Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Aug;111(4):1199–1207. doi: 10.1104/pp.111.4.1199

Role of the Plasma Membrane H+-ATPase in K+ Transport.

D P Briskin 1, M C Gawienowski 1
PMCID: PMC160997  PMID: 12226357

Abstract

The role of the plant plasma membrane H+-ATPase in K+ uptake was examined using red beet (Beta vulgaris L.) plasma membrane vesicles and a partially purified preparation of the red beet plasma membrane H+-ATPase reconstituted in proteoliposomes and planar bilayers. For plasma membrane vesicles, ATP-dependent K+ efflux was only partially inhibited by 100 [mu]M vanadate or 10 [mu]M carbonyl cyanide-p-trifluoromethoxyphenylhydrazone. However, full inhibition of ATP-dependent K+ efflux by these reagents occurred when the red beet plasma membrane H+-ATPase was partially purified and reconstituted in proteoliposomes. When reconstituted in a planar bilayer membrane, the current/voltage relationship for the plasma membrane H+-ATPase showed little effect of K+ gradients imposed across the bilayer membrane. When taken together, the results of this study demonstrate that the plant plasma membrane H+-ATPase does not mediate direct K+ transport chemically linked to ATP hydrolysis. Rather, this enzyme provides a driving force for cellular K+ uptake by secondary mechanisms, such as K+ channels or H+/K+ symporters. Although the presence of a small, protonophore-insensitive component of ATP-dependent K+ transport in a plasma membrane fraction might be mediated by an ATP-activated K+ channel, the possibility of direct K+ transport by other ATPases (i.e. K+-ATPases) associated with either the plasma membrane or other cellular membranes cannot be ruled out.

Full Text

The Full Text of this article is available as a PDF (979.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Assmann S. M. Signal transduction in guard cells. Annu Rev Cell Biol. 1993;9:345–375. doi: 10.1146/annurev.cb.09.110193.002021. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Brauer D., Tu S. L., Hsu A. F., Thomas C. E. Kinetic analysis of proton transport by the vanadate-sensitive ATPase from maize root microsomes. Plant Physiol. 1989 Feb;89(2):464–471. doi: 10.1104/pp.89.2.464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Briskin D. P., Basu S., Assmann S. M. Characterization of the Red Beet Plasma Membrane H+-ATPase Reconstituted in a Planar Bilayer System. Plant Physiol. 1995 May;108(1):393–398. doi: 10.1104/pp.108.1.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Briskin D. P., Reynolds-Niesman I. Determination of H/ATP Stoichiometry for the Plasma Membrane H-ATPase from Red Beet (Beta vulgaris L.) Storage Tissue. Plant Physiol. 1991 Jan;95(1):242–250. doi: 10.1104/pp.95.1.242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cheeseman J. M., Hanson J. B. Energy-linked Potassium Influx as Related to Cell Potential in Corn Roots. Plant Physiol. 1979 Nov;64(5):842–845. doi: 10.1104/pp.64.5.842. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Davies J. M., Poole R. J., Rea P. A., Sanders D. Potassium transport into plant vacuoles energized directly by a proton-pumping inorganic pyrophosphatase. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11701–11705. doi: 10.1073/pnas.89.24.11701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fisher J. D., Hansen D., Hodges T. K. Correlation between ion fluxes and ion-stimulated adenosine triphosphatase activity of plant roots. Plant Physiol. 1970 Dec;46(6):812–814. doi: 10.1104/pp.46.6.812. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Giannini J. L., Briskin D. P. Proton Transport in Plasma Membrane and Tonoplast Vesicles from Red Beet (Beta vulgaris L.) Storage Tissue : A Comparative Study of Ion Effects on DeltapH and DeltaPsi. Plant Physiol. 1987 Jul;84(3):613–618. doi: 10.1104/pp.84.3.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Giannini J. L., Briskin D. P. Pyridine nucleotide oxidation by a plasma membrane fraction from red beet (Beta vulgaris L.) storage tissue. Arch Biochem Biophys. 1988 Feb 1;260(2):653–660. doi: 10.1016/0003-9861(88)90494-8. [DOI] [PubMed] [Google Scholar]
  11. Gildensoph L. H., Briskin D. P. Modification of the Red Beet Plasma Membrane H-ATPase by Diethylpyrocarbonate. Plant Physiol. 1990 Oct;94(2):696–703. doi: 10.1104/pp.94.2.696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hirata H., Ohno K., Sone N., Kagawa Y., Hamamoto T. Direct measurement of the electrogenicity of the H+-ATPase from thermophilic bacterium PS3 reconstituted in planar phospholipid bilayers. J Biol Chem. 1986 Jul 25;261(21):9839–9843. [PubMed] [Google Scholar]
  13. Jain M. K., Zakim D. The spontaneous incorporation of proteins into preformed bilayers. Biochim Biophys Acta. 1987 Apr 27;906(1):33–68. doi: 10.1016/0304-4157(87)90004-9. [DOI] [PubMed] [Google Scholar]
  14. Jezek P., Mahdi F., Garlid K. D. Reconstitution of the beef heart and rat liver mitochondrial K+/H+ (Na+/H+) antiporter. Quantitation of K+ transport with the novel fluorescent probe, PBFI. J Biol Chem. 1990 Jun 25;265(18):10522–10526. [PubMed] [Google Scholar]
  15. Kochian L. V., Shaff J. E., Lucas W. J. High affinity k uptake in maize roots: a lack of coupling with h efflux. Plant Physiol. 1989 Nov;91(3):1202–1211. doi: 10.1104/pp.91.3.1202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Maathuis F. J., Sanders D. Mechanism of high-affinity potassium uptake in roots of Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9272–9276. doi: 10.1073/pnas.91.20.9272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Michelet B., Boutry M. The Plasma Membrane H+-ATPase (A Highly Regulated Enzyme with Multiple Physiological Functions). Plant Physiol. 1995 May;108(1):1–6. doi: 10.1104/pp.108.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Poole R. J., Briskin D. P., Krátký Z., Johnstone R. M. Density gradient localization of plasma membrane and tonoplast from storage tissue of growing and dormant red beet : characterization of proton-transport and ATPase in tonoplast vesicles. Plant Physiol. 1984 Mar;74(3):549–556. doi: 10.1104/pp.74.3.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ramirez J. A., Vacata V., McCusker J. H., Haber J. E., Mortimer R. K., Owen W. G., Lecar H. ATP-sensitive K+ channels in a plasma membrane H+-ATPase mutant of the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7866–7870. doi: 10.1073/pnas.86.20.7866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ros R., Romieu C., Gibrat R., Grignon C. The plant inorganic pyrophosphatase does not transport K+ in vacuole membrane vesicles multilabeled with fluorescent probes for H+, K+, and membrane potential. J Biol Chem. 1995 Mar 3;270(9):4368–4374. doi: 10.1074/jbc.270.9.4368. [DOI] [PubMed] [Google Scholar]
  21. Sato M. H., Kasahara M., Ishii N., Homareda H., Matsui H., Yoshida M. Purified vacuolar inorganic pyrophosphatase consisting of a 75-kDa polypeptide can pump H+ into reconstituted proteoliposomes. J Biol Chem. 1994 Mar 4;269(9):6725–6728. [PubMed] [Google Scholar]
  22. Schachtman D. P., Schroeder J. I. Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature. 1994 Aug 25;370(6491):655–658. doi: 10.1038/370655a0. [DOI] [PubMed] [Google Scholar]
  23. Schroeder J. I., Ward J. M., Gassmann W. Perspectives on the physiology and structure of inward-rectifying K+ channels in higher plants: biophysical implications for K+ uptake. Annu Rev Biophys Biomol Struct. 1994;23:441–471. doi: 10.1146/annurev.bb.23.060194.002301. [DOI] [PubMed] [Google Scholar]
  24. Spalding E. P., Goldsmith MHM. Activation of K+ Channels in the Plasma Membrane of Arabidopsis by ATP Produced Photosynthetically. Plant Cell. 1993 Apr;5(4):477–484. doi: 10.1105/tpc.5.4.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wu W. H., Assmann S. M. Is ATP Required for K+ Channel Activation in Vicia Guard Cells? Plant Physiol. 1995 Jan;107(1):101–109. doi: 10.1104/pp.107.1.101. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES