Abstract
The role of the plant plasma membrane H+-ATPase in K+ uptake was examined using red beet (Beta vulgaris L.) plasma membrane vesicles and a partially purified preparation of the red beet plasma membrane H+-ATPase reconstituted in proteoliposomes and planar bilayers. For plasma membrane vesicles, ATP-dependent K+ efflux was only partially inhibited by 100 [mu]M vanadate or 10 [mu]M carbonyl cyanide-p-trifluoromethoxyphenylhydrazone. However, full inhibition of ATP-dependent K+ efflux by these reagents occurred when the red beet plasma membrane H+-ATPase was partially purified and reconstituted in proteoliposomes. When reconstituted in a planar bilayer membrane, the current/voltage relationship for the plasma membrane H+-ATPase showed little effect of K+ gradients imposed across the bilayer membrane. When taken together, the results of this study demonstrate that the plant plasma membrane H+-ATPase does not mediate direct K+ transport chemically linked to ATP hydrolysis. Rather, this enzyme provides a driving force for cellular K+ uptake by secondary mechanisms, such as K+ channels or H+/K+ symporters. Although the presence of a small, protonophore-insensitive component of ATP-dependent K+ transport in a plasma membrane fraction might be mediated by an ATP-activated K+ channel, the possibility of direct K+ transport by other ATPases (i.e. K+-ATPases) associated with either the plasma membrane or other cellular membranes cannot be ruled out.
Full Text
The Full Text of this article is available as a PDF (979.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Assmann S. M. Signal transduction in guard cells. Annu Rev Cell Biol. 1993;9:345–375. doi: 10.1146/annurev.cb.09.110193.002021. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Brauer D., Tu S. L., Hsu A. F., Thomas C. E. Kinetic analysis of proton transport by the vanadate-sensitive ATPase from maize root microsomes. Plant Physiol. 1989 Feb;89(2):464–471. doi: 10.1104/pp.89.2.464. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Briskin D. P., Basu S., Assmann S. M. Characterization of the Red Beet Plasma Membrane H+-ATPase Reconstituted in a Planar Bilayer System. Plant Physiol. 1995 May;108(1):393–398. doi: 10.1104/pp.108.1.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Briskin D. P., Reynolds-Niesman I. Determination of H/ATP Stoichiometry for the Plasma Membrane H-ATPase from Red Beet (Beta vulgaris L.) Storage Tissue. Plant Physiol. 1991 Jan;95(1):242–250. doi: 10.1104/pp.95.1.242. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheeseman J. M., Hanson J. B. Energy-linked Potassium Influx as Related to Cell Potential in Corn Roots. Plant Physiol. 1979 Nov;64(5):842–845. doi: 10.1104/pp.64.5.842. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davies J. M., Poole R. J., Rea P. A., Sanders D. Potassium transport into plant vacuoles energized directly by a proton-pumping inorganic pyrophosphatase. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11701–11705. doi: 10.1073/pnas.89.24.11701. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fisher J. D., Hansen D., Hodges T. K. Correlation between ion fluxes and ion-stimulated adenosine triphosphatase activity of plant roots. Plant Physiol. 1970 Dec;46(6):812–814. doi: 10.1104/pp.46.6.812. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giannini J. L., Briskin D. P. Proton Transport in Plasma Membrane and Tonoplast Vesicles from Red Beet (Beta vulgaris L.) Storage Tissue : A Comparative Study of Ion Effects on DeltapH and DeltaPsi. Plant Physiol. 1987 Jul;84(3):613–618. doi: 10.1104/pp.84.3.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giannini J. L., Briskin D. P. Pyridine nucleotide oxidation by a plasma membrane fraction from red beet (Beta vulgaris L.) storage tissue. Arch Biochem Biophys. 1988 Feb 1;260(2):653–660. doi: 10.1016/0003-9861(88)90494-8. [DOI] [PubMed] [Google Scholar]
- Gildensoph L. H., Briskin D. P. Modification of the Red Beet Plasma Membrane H-ATPase by Diethylpyrocarbonate. Plant Physiol. 1990 Oct;94(2):696–703. doi: 10.1104/pp.94.2.696. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirata H., Ohno K., Sone N., Kagawa Y., Hamamoto T. Direct measurement of the electrogenicity of the H+-ATPase from thermophilic bacterium PS3 reconstituted in planar phospholipid bilayers. J Biol Chem. 1986 Jul 25;261(21):9839–9843. [PubMed] [Google Scholar]
- Jain M. K., Zakim D. The spontaneous incorporation of proteins into preformed bilayers. Biochim Biophys Acta. 1987 Apr 27;906(1):33–68. doi: 10.1016/0304-4157(87)90004-9. [DOI] [PubMed] [Google Scholar]
- Jezek P., Mahdi F., Garlid K. D. Reconstitution of the beef heart and rat liver mitochondrial K+/H+ (Na+/H+) antiporter. Quantitation of K+ transport with the novel fluorescent probe, PBFI. J Biol Chem. 1990 Jun 25;265(18):10522–10526. [PubMed] [Google Scholar]
- Kochian L. V., Shaff J. E., Lucas W. J. High affinity k uptake in maize roots: a lack of coupling with h efflux. Plant Physiol. 1989 Nov;91(3):1202–1211. doi: 10.1104/pp.91.3.1202. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maathuis F. J., Sanders D. Mechanism of high-affinity potassium uptake in roots of Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9272–9276. doi: 10.1073/pnas.91.20.9272. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Michelet B., Boutry M. The Plasma Membrane H+-ATPase (A Highly Regulated Enzyme with Multiple Physiological Functions). Plant Physiol. 1995 May;108(1):1–6. doi: 10.1104/pp.108.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Poole R. J., Briskin D. P., Krátký Z., Johnstone R. M. Density gradient localization of plasma membrane and tonoplast from storage tissue of growing and dormant red beet : characterization of proton-transport and ATPase in tonoplast vesicles. Plant Physiol. 1984 Mar;74(3):549–556. doi: 10.1104/pp.74.3.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ramirez J. A., Vacata V., McCusker J. H., Haber J. E., Mortimer R. K., Owen W. G., Lecar H. ATP-sensitive K+ channels in a plasma membrane H+-ATPase mutant of the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7866–7870. doi: 10.1073/pnas.86.20.7866. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ros R., Romieu C., Gibrat R., Grignon C. The plant inorganic pyrophosphatase does not transport K+ in vacuole membrane vesicles multilabeled with fluorescent probes for H+, K+, and membrane potential. J Biol Chem. 1995 Mar 3;270(9):4368–4374. doi: 10.1074/jbc.270.9.4368. [DOI] [PubMed] [Google Scholar]
- Sato M. H., Kasahara M., Ishii N., Homareda H., Matsui H., Yoshida M. Purified vacuolar inorganic pyrophosphatase consisting of a 75-kDa polypeptide can pump H+ into reconstituted proteoliposomes. J Biol Chem. 1994 Mar 4;269(9):6725–6728. [PubMed] [Google Scholar]
- Schachtman D. P., Schroeder J. I. Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature. 1994 Aug 25;370(6491):655–658. doi: 10.1038/370655a0. [DOI] [PubMed] [Google Scholar]
- Schroeder J. I., Ward J. M., Gassmann W. Perspectives on the physiology and structure of inward-rectifying K+ channels in higher plants: biophysical implications for K+ uptake. Annu Rev Biophys Biomol Struct. 1994;23:441–471. doi: 10.1146/annurev.bb.23.060194.002301. [DOI] [PubMed] [Google Scholar]
- Spalding E. P., Goldsmith MHM. Activation of K+ Channels in the Plasma Membrane of Arabidopsis by ATP Produced Photosynthetically. Plant Cell. 1993 Apr;5(4):477–484. doi: 10.1105/tpc.5.4.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu W. H., Assmann S. M. Is ATP Required for K+ Channel Activation in Vicia Guard Cells? Plant Physiol. 1995 Jan;107(1):101–109. doi: 10.1104/pp.107.1.101. [DOI] [PMC free article] [PubMed] [Google Scholar]