Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Aug;111(4):1263–1269. doi: 10.1104/pp.111.4.1263

Evidence for an Elongation/Reduction/C1-Elimination Pathway in the Biosynthesis of n-Heptane in Xylem of Jeffrey Pine.

T J Savage 1, M K Hristova 1, R Croteau 1
PMCID: PMC161006  PMID: 12226360

Abstract

The biosynthetic pathway to n-heptane was investigated by examining the effect of the [beta]-keto acyl-acyl carrier protein synthase inhibitor (2R,3S)-2,3-epoxy-4-oxo-7E,10E-dodecadienamide (cerulenin), a thiol reagent ([beta]-mercaptoethanol), and an aldehydetrapping reagent (hydroxylamine) on the biosynthesis of n-[14C]heptane and putative intermediates in xylem sections of Jeffrey pine (Pinus jeffreyi Grev.& Balf.) incubated with [14C]acetate. Cerulenin inhibited C18 fatty acid biosynthesis but had relatively little effect on radiolabel incorporation into C8 fatty acyl groups and n-heptane. [beta]-Mercaptoethanol inhibited n-heptane biosynthesis, with a corresponding accumulation of radiolabel into both octanal and 1-octanol, whereas hydroxylamine inhibited both n-heptane and 1-octanol biosynthesis, with radiolabel accumulation in octyl oximes. [14C]Octanal was converted to both n-heptane and 1-octanol when incubated with xylem sections, whereas [14C]1-octanol was converted to octanal and n-heptane in a hydroxylamine-sensitive reaction. These results suggest a pathway for the biosynthesis of n-heptane whereby acetate is polymerized via a typical fatty acid synthase reaction sequence to yield a C8 thioester, which subsequently undergoes a two-electron reduction to generate a free thiol and octanal, the latter of which alternately undergoes an additional, reversible reduction to form 1-octanol or loss of C1 to generate n-heptane.

Full Text

The Full Text of this article is available as a PDF (744.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agrawal V. P., Lessire R., Stumpf P. K. Biosynthesis of very long chain fatty acids in microsomes from epidermal cells of Allium porrum L. Arch Biochem Biophys. 1984 May 1;230(2):580–589. doi: 10.1016/0003-9861(84)90438-7. [DOI] [PubMed] [Google Scholar]
  2. Buckner J. S., Kolattukudy P. E. Specific inhibition of alkane synthesis with accumulation of very long chain compounds by dithioerythritol, dithiothreitol, and mercaptoethanol in Pisum sativum. Arch Biochem Biophys. 1973 May;156(1):34–45. doi: 10.1016/0003-9861(73)90338-x. [DOI] [PubMed] [Google Scholar]
  3. Cassagne C., Darriet D., Bourre J. M. Evidence of alkane synthesis by the sciatic nerve of the rabbit. FEBS Lett. 1977 Oct 1;82(1):51–54. doi: 10.1016/0014-5793(77)80883-1. [DOI] [PubMed] [Google Scholar]
  4. Cheesbrough T. M., Kolattukudy P. E. Alkane biosynthesis by decarbonylation of aldehydes catalyzed by a particulate preparation from Pisum sativum. Proc Natl Acad Sci U S A. 1984 Nov;81(21):6613–6617. doi: 10.1073/pnas.81.21.6613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. D'Agnolo G., Rosenfeld I. S., Awaya J., Omura S., Vagelos P. R. Inhibition of fatty acid synthesis by the antibiotic cerulenin. Specific inactivation of beta-ketoacyl-acyl carrier protein synthetase. Biochim Biophys Acta. 1973 Nov 29;326(2):155–156. doi: 10.1016/0005-2760(73)90241-5. [DOI] [PubMed] [Google Scholar]
  6. Dennis M., Kolattukudy P. E. A cobalt-porphyrin enzyme converts a fatty aldehyde to a hydrocarbon and CO. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5306–5310. doi: 10.1073/pnas.89.12.5306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Garssen G. J., Vliegenthart J. F., Boldingh J. An anaerobic reaction between lipoxygenase, linoleic acid and its hydroperoxides. Biochem J. 1971 Apr;122(3):327–332. doi: 10.1042/bj1220327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Heise K. P., Fuhrmann J. Factors controlling medium-chain fatty acid synthesis in plastids from Cuphea embryos. Prog Lipid Res. 1994;33(1-2):87–95. doi: 10.1016/0163-7827(94)90011-6. [DOI] [PubMed] [Google Scholar]
  9. JACOBZINER H., RAYBIN H. W. Ingestion accidents and their mode of occurrence. N Y State J Med. 1958 Apr 15;58(8):1327–1330. [PubMed] [Google Scholar]
  10. Jackowski S., Rock C. O. Acetoacetyl-acyl carrier protein synthase, a potential regulator of fatty acid biosynthesis in bacteria. J Biol Chem. 1987 Jun 5;262(16):7927–7931. [PubMed] [Google Scholar]
  11. Pattee H. E., Singleton J. A., Johns E. B. Pentane production by peanut lipoxygenase. Lipids. 1974 May;9(5):302–306. doi: 10.1007/BF02533105. [DOI] [PubMed] [Google Scholar]
  12. Reed J. R., Quilici D. R., Blomquist G. J., Reitz R. C. Proposed mechanism for the cytochrome P450-catalyzed conversion of aldehydes to hydrocarbons in the house fly, Musca domestica. Biochemistry. 1995 Dec 12;34(49):16221–16227. doi: 10.1021/bi00049a038. [DOI] [PubMed] [Google Scholar]
  13. Savage T. J., Hamilton B. S., Croteau R. Biochemistry of Short-Chain Alkanes (Tissue-Specific Biosynthesis of n-Heptane in Pinus jeffreyi). Plant Physiol. 1996 Jan;110(1):179–186. doi: 10.1104/pp.110.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES