Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Aug;111(4):1271–1279. doi: 10.1104/pp.111.4.1271

Cold-shock regulation of the Arabidopsis TCH genes and the effects of modulating intracellular calcium levels.

D H Polisensky 1, J Braam 1
PMCID: PMC161008  PMID: 8756505

Abstract

The Arabidopsis TCH genes, which encode calmodulin-related proteins and a xyloglucan endotransglycosylase, are shown to be up-regulated in expression following cold shock. We investigated a possible role of fluctuations in intracellular calcium ion concentrations ([Ca2+]) in the cold-shock-induced TCH gene expression. Transgenic plants harboring the apoaequorin gene were generated to monitor [Ca2+]) and to test the necessity of cold-induced [Ca2+] increases for TCH expression. Cold-shock-induced [Ca2+] increases can be blocked by La3+ and Gd3+, putative plasma membrane Ca2+ channel blockers, and 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, an extracellular Ca2+ chelator. Cold-shock-induced expression of the TCH genes is inhibited by levels of La3+, Gd3+, and 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, that have been shown to block [Ca2+] increases. These data support the hypotheses that (a) intracellular [Ca2+] increases following cold shock require extracellular Ca2+ and may derive from a Ca2+ influx mediated by plasmalemma Ca2+ channels, and (b) cold up-regulation of expression of at least a subset of the TCH genes requires an intracellular [Ca2+] increase. The inhibitors are also shown to have stimulus-independent effects on gene expression, providing strong evidence that these commonly used chemicals have more complex effects than generally reported.

Full Text

The Full Text of this article is available as a PDF (2.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Braam J., Davis R. W. Rain-, wind-, and touch-induced expression of calmodulin and calmodulin-related genes in Arabidopsis. Cell. 1990 Feb 9;60(3):357–364. doi: 10.1016/0092-8674(90)90587-5. [DOI] [PubMed] [Google Scholar]
  2. Braam J. Regulated expression of the calmodulin-related TCH genes in cultured Arabidopsis cells: induction by calcium and heat shock. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3213–3216. doi: 10.1073/pnas.89.8.3213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Buccigross J. M., O'Donnell C. L., Nelson D. J. A flow-dialysis method for obtaining relative measures of association constants in calmodulin-metal-ion systems. Biochem J. 1986 May 1;235(3):677–684. doi: 10.1042/bj2350677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ding J. P., Pickard B. G. Mechanosensory calcium-selective cation channels in epidermal cells. Plant J. 1993 Jan;3(1):83–110. [PubMed] [Google Scholar]
  5. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  6. Gilmour S. J., Hajela R. K., Thomashow M. F. Cold Acclimation in Arabidopsis thaliana. Plant Physiol. 1988 Jul;87(3):745–750. doi: 10.1104/pp.87.3.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Haley A., Russell A. J., Wood N., Allan A. C., Knight M., Campbell A. K., Trewavas A. J. Effects of mechanical signaling on plant cell cytosolic calcium. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4124–4128. doi: 10.1073/pnas.92.10.4124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jarillo J. A., Leyva A., Salinas J., Martinez-Zapater J. M. Low Temperature Induces the Accumulation of Alcohol Dehydrogenase mRNA in Arabidopsis thaliana, a Chilling-Tolerant Plant. Plant Physiol. 1993 Mar;101(3):833–837. doi: 10.1104/pp.101.3.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Klüsener B., Boheim G., Liss H., Engelberth J., Weiler E. W. Gadolinium-sensitive, voltage-dependent calcium release channels in the endoplasmic reticulum of a higher plant mechanoreceptor organ. EMBO J. 1995 Jun 15;14(12):2708–2714. doi: 10.1002/j.1460-2075.1995.tb07271.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Knight M. R., Campbell A. K., Smith S. M., Trewavas A. J. Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature. 1991 Aug 8;352(6335):524–526. doi: 10.1038/352524a0. [DOI] [PubMed] [Google Scholar]
  11. Knight M. R., Read N. D., Campbell A. K., Trewavas A. J. Imaging calcium dynamics in living plants using semi-synthetic recombinant aequorins. J Cell Biol. 1993 Apr;121(1):83–90. doi: 10.1083/jcb.121.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Knight M. R., Smith S. M., Trewavas A. J. Wind-induced plant motion immediately increases cytosolic calcium. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):4967–4971. doi: 10.1073/pnas.89.11.4967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Monroy A. F., Dhindsa R. S. Low-temperature signal transduction: induction of cold acclimation-specific genes of alfalfa by calcium at 25 degrees C. Plant Cell. 1995 Mar;7(3):321–331. doi: 10.1105/tpc.7.3.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Monroy A. F., Sarhan F., Dhindsa R. S. Cold-Induced Changes in Freezing Tolerance, Protein Phosphorylation, and Gene Expression (Evidence for a Role of Calcium). Plant Physiol. 1993 Aug;102(4):1227–1235. doi: 10.1104/pp.102.4.1227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mulqueen P., Tingey J. M., Horrocks W. D., Jr Characterization of lanthanide (III) ion binding to calmodulin using luminescence spectroscopy. Biochemistry. 1985 Nov 5;24(23):6639–6645. doi: 10.1021/bi00344a051. [DOI] [PubMed] [Google Scholar]
  16. Pillai S., Bikle D. D. Lanthanum influx into cultured human keratinocytes: effect on calcium flux and terminal differentiation. J Cell Physiol. 1992 Jun;151(3):623–629. doi: 10.1002/jcp.1041510323. [DOI] [PubMed] [Google Scholar]
  17. Powis D. A., Clark C. L., O'Brien K. J. Lanthanum can be transported by the sodium-calcium exchange pathway and directly triggers catecholamine release from bovine chromaffin cells. Cell Calcium. 1994 Nov;16(5):377–390. doi: 10.1016/0143-4160(94)90031-0. [DOI] [PubMed] [Google Scholar]
  18. Reid R. J., Smith F. A. Regulation of Calcium Influx in Chara: Effects of K, pH, Metabolic Inhibition, and Calcium Channel Blockers. Plant Physiol. 1992 Oct;100(2):637–643. doi: 10.1104/pp.100.2.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sistrunk M. L., Antosiewicz D. M., Purugganan M. M., Braam J. Arabidopsis TCH3 encodes a novel Ca2+ binding protein and shows environmentally induced and tissue-specific regulation. Plant Cell. 1994 Nov;6(11):1553–1565. doi: 10.1105/tpc.6.11.1553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tsien R. Y. New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry. 1980 May 27;19(11):2396–2404. doi: 10.1021/bi00552a018. [DOI] [PubMed] [Google Scholar]
  21. Valvekens D., Van Montagu M., Van Lijsebettens M. Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5536–5540. doi: 10.1073/pnas.85.15.5536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Verwoerd T. C., Dekker B. M., Hoekema A. A small-scale procedure for the rapid isolation of plant RNAs. Nucleic Acids Res. 1989 Mar 25;17(6):2362–2362. doi: 10.1093/nar/17.6.2362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Weihe E., Hartschuh W., Metz J., Brühl U. The use of ionic lanthanum as a diffusion tracer and as a marker of calcium binding sites. Cell Tissue Res. 1977 Mar 16;178(3):285–302. doi: 10.1007/BF00218693. [DOI] [PubMed] [Google Scholar]
  24. Wendt-Gallitelli M. F., Isenberg G. Extra- and intracellular lanthanum: modified calcium distribution, inward currents and contractility in guinea pig ventricular preparations. Pflugers Arch. 1985 Dec;405(4):310–322. doi: 10.1007/BF00595683. [DOI] [PubMed] [Google Scholar]
  25. White T. C., Simmonds D., Donaldson P., Singh J. Regulation of BN115, a low-temperature-responsive gene from winter Brassica napus. Plant Physiol. 1994 Nov;106(3):917–928. doi: 10.1104/pp.106.3.917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Xu W., Purugganan M. M., Polisensky D. H., Antosiewicz D. M., Fry S. C., Braam J. Arabidopsis TCH4, regulated by hormones and the environment, encodes a xyloglucan endotransglycosylase. Plant Cell. 1995 Oct;7(10):1555–1567. doi: 10.1105/tpc.7.10.1555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Zimmerman U. J., Schlaepfer W. W. Activation of calpain I and calpain II: a comparative study using terbium as a fluorescent probe for calcium-binding sites. Arch Biochem Biophys. 1988 Nov 1;266(2):462–469. doi: 10.1016/0003-9861(88)90278-0. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES