Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1995 Oct;7(10):1569–1582. doi: 10.1105/tpc.7.10.1569

A novel class of MADS box genes is involved in ovule development in petunia.

G C Angenent 1, J Franken 1, M Busscher 1, A van Dijken 1, J L van Went 1, H J Dons 1, A J van Tunen 1
PMCID: PMC161013  PMID: 7580252

Abstract

We isolated and characterized two ovule-specific MADS box cDNAs from petunia, designated floral binding protein (fbp) genes 7 and 11. The putative protein products of these genes have approximately 90% of their overall amino acid sequence in common. In situ RNA hybridization experiments revealed that both genes are expressed in the center of the developing gynoecium before ovule primordia are visible. At later developmental stages, hybridization signals were observed only in the ovules, suggesting that these genes are involved in ovule formation. To test this hypothesis, we raised transgenic petunia plants in which both fbp7 and fbp11 expression was inhibited by cosuppression. In the ovary of these transformants, spaghetti-shaped structures developed in positions normally occupied by ovules. These abnormal structures morphologically and functionally resemble style and stigma tissues. Our results show that these MADS box genes belong to a new class of MADS box genes involved in proper ovule development in petunia.

Full Text

The Full Text of this article is available as a PDF (4.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. A simple and general method for transferring genes into plants. Science. 1985 Mar 8;227(4691):1229–1231. doi: 10.1126/science.227.4691.1229. [DOI] [PubMed] [Google Scholar]
  2. Angenent G. C., Busscher M., Franken J., Dons H. J., van Tunen A. J. Functional interaction between the homeotic genes fbp1 and pMADS1 during petunia floral organogenesis. Plant Cell. 1995 May;7(5):507–516. doi: 10.1105/tpc.7.5.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Angenent G. C., Busscher M., Franken J., Mol J. N., van Tunen A. J. Differential expression of two MADS box genes in wild-type and mutant petunia flowers. Plant Cell. 1992 Aug;4(8):983–993. doi: 10.1105/tpc.4.8.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Angenent G. C., Franken J., Busscher M., Colombo L., van Tunen A. J. Petal and stamen formation in petunia is regulated by the homeotic gene fbp1. Plant J. 1993 Jul;4(1):101–112. doi: 10.1046/j.1365-313x.1993.04010101.x. [DOI] [PubMed] [Google Scholar]
  5. Angenent G. C., Franken J., Busscher M., Weiss D., van Tunen A. J. Co-suppression of the petunia homeotic gene fbp2 affects the identity of the generative meristem. Plant J. 1994 Jan;5(1):33–44. doi: 10.1046/j.1365-313x.1994.5010033.x. [DOI] [PubMed] [Google Scholar]
  6. Coen E. S., Romero J. M., Doyle S., Elliott R., Murphy G., Carpenter R. floricaula: a homeotic gene required for flower development in antirrhinum majus. Cell. 1990 Dec 21;63(6):1311–1322. doi: 10.1016/0092-8674(90)90426-f. [DOI] [PubMed] [Google Scholar]
  7. Evans P. T., Malmberg R. L. Alternative pathways of tobacco placental development: time of commitment and analysis of a mutant. Dev Biol. 1989 Nov;136(1):273–283. doi: 10.1016/0012-1606(89)90148-6. [DOI] [PubMed] [Google Scholar]
  8. Feinberg A. P., Vogelstein B. "A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity". Addendum. Anal Biochem. 1984 Feb;137(1):266–267. doi: 10.1016/0003-2697(84)90381-6. [DOI] [PubMed] [Google Scholar]
  9. Huijser P., Klein J., Lönnig W. E., Meijer H., Saedler H., Sommer H. Bracteomania, an inflorescence anomaly, is caused by the loss of function of the MADS-box gene squamosa in Antirrhinum majus. EMBO J. 1992 Apr;11(4):1239–1249. doi: 10.1002/j.1460-2075.1992.tb05168.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Koes R. E., Spelt C. E., Reif H. J., van den Elzen P. J., Veltkamp E., Mol J. N. Floral tissue of Petunia hybrida (V30) expresses only one member of the chalcone synthase multigene family. Nucleic Acids Res. 1986 Jul 11;14(13):5229–5239. doi: 10.1093/nar/14.13.5229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ma H., Yanofsky M. F., Meyerowitz E. M. AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Dev. 1991 Mar;5(3):484–495. doi: 10.1101/gad.5.3.484. [DOI] [PubMed] [Google Scholar]
  12. Mandel M. A., Bowman J. L., Kempin S. A., Ma H., Meyerowitz E. M., Yanofsky M. F. Manipulation of flower structure in transgenic tobacco. Cell. 1992 Oct 2;71(1):133–143. doi: 10.1016/0092-8674(92)90272-e. [DOI] [PubMed] [Google Scholar]
  13. Mizukami Y., Ma H. Ectopic expression of the floral homeotic gene AGAMOUS in transgenic Arabidopsis plants alters floral organ identity. Cell. 1992 Oct 2;71(1):119–131. doi: 10.1016/0092-8674(92)90271-d. [DOI] [PubMed] [Google Scholar]
  14. Modrusan Z., Reiser L., Feldmann K. A., Fischer R. L., Haughn G. W. Homeotic Transformation of Ovules into Carpel-like Structures in Arabidopsis. Plant Cell. 1994 Mar;6(3):333–349. doi: 10.1105/tpc.6.3.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ray A., Robinson-Beers K., Ray S., Baker S. C., Lang J. D., Preuss D., Milligan S. B., Gasser C. S. Arabidopsis floral homeotic gene BELL (BEL1) controls ovule development through negative regulation of AGAMOUS gene (AG). Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):5761–5765. doi: 10.1073/pnas.91.13.5761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Reiser L., Fischer R. L. The Ovule and the Embryo Sac. Plant Cell. 1993 Oct;5(10):1291–1301. doi: 10.1105/tpc.5.10.1291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schwarz-Sommer Z., Huijser P., Nacken W., Saedler H., Sommer H. Genetic Control of Flower Development by Homeotic Genes in Antirrhinum majus. Science. 1990 Nov 16;250(4983):931–936. doi: 10.1126/science.250.4983.931. [DOI] [PubMed] [Google Scholar]
  18. Tröbner W., Ramirez L., Motte P., Hue I., Huijser P., Lönnig W. E., Saedler H., Sommer H., Schwarz-Sommer Z. GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis. EMBO J. 1992 Dec;11(13):4693–4704. doi: 10.1002/j.1460-2075.1992.tb05574.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Tsuchimoto S., van der Krol A. R., Chua N. H. Ectopic expression of pMADS3 in transgenic petunia phenocopies the petunia blind mutant. Plant Cell. 1993 Aug;5(8):843–853. doi: 10.1105/tpc.5.8.843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Verwoerd T. C., Dekker B. M., Hoekema A. A small-scale procedure for the rapid isolation of plant RNAs. Nucleic Acids Res. 1989 Mar 25;17(6):2362–2362. doi: 10.1093/nar/17.6.2362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Weigel D., Alvarez J., Smyth D. R., Yanofsky M. F., Meyerowitz E. M. LEAFY controls floral meristem identity in Arabidopsis. Cell. 1992 May 29;69(5):843–859. doi: 10.1016/0092-8674(92)90295-n. [DOI] [PubMed] [Google Scholar]
  22. Weigel D., Meyerowitz E. M. The ABCs of floral homeotic genes. Cell. 1994 Jul 29;78(2):203–209. doi: 10.1016/0092-8674(94)90291-7. [DOI] [PubMed] [Google Scholar]
  23. van Tunen A. J., Koes R. E., Spelt C. E., van der Krol A. R., Stuitje A. R., Mol J. N. Cloning of the two chalcone flavanone isomerase genes from Petunia hybrida: coordinate, light-regulated and differential expression of flavonoid genes. EMBO J. 1988 May;7(5):1257–1263. doi: 10.1002/j.1460-2075.1988.tb02939.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. van Tunen A. J., Mur L. A., Brouns G. S., Rienstra J. D., Koes R. E., Mol J. N. Pollen- and anther-specific chi promoters from petunia: tandem promoter regulation of the chiA gene. Plant Cell. 1990 May;2(5):393–401. doi: 10.1105/tpc.2.5.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. van der Krol A. R., Mur L. A., Beld M., Mol J. N., Stuitje A. R. Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell. 1990 Apr;2(4):291–299. doi: 10.1105/tpc.2.4.291. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES