Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Aug;111(4):1329–1338. doi: 10.1104/pp.111.4.1329

Analysis of the Import of Carboxyl-Terminal Truncations of the 23-Kilodalton Subunit of the Oxygen-Evolving Complex Suggests That Its Structure Is an Important Determinant for Thylakoid Transport.

R A Roffey 1, S M Theg 1
PMCID: PMC161019  PMID: 12226365

Abstract

A series of deletions from the carboxyl terminus of the 23-kD subunit of the photosynthetic oxygen-evolving complex OE23 revealed that these truncations result in various degrees of inhibition of translocation across thylakoid membranes and their subsequent assembly to the oxygen-evolving complex. Import of in vitro translated precursors across the chloroplast envelopes was not inhibited by these truncations. Time-course studies of the import of truncated OE23 precursors into intact chloroplasts revealed that the stromal intermediate was subsequently translocated into the thylakoid lumen, where it was processed to a smaller size and rapidly degraded. In contrast to the full-length OE23 intermediate, the truncated intermediate forms that accumulated in the stroma as a result of de-energization of thylakoid membranes could be found associated with the membrane rather than free in the stroma. Protease digestion experiments revealed that the deletions evidently altered the folded conformation of the protein. These results suggest that the carboxyl-terminal portion of the OE23 precursor is important for the maintenance of an optimal structure for import into thylakoids, implying that the efficient translocation of OE23 requires the protein to be correctly folded. In addition, the rapid degradation of the truncated forms of the processed OE23 within the lumen indicates that a protease (or proteases) active in the lumen can recognize and remove misfolded polypeptides.

Full Text

The Full Text of this article is available as a PDF (3.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett J. Biosynthesis of the light-harvesting chlorophyll a/b protein. Polypeptide turnover in darkness. Eur J Biochem. 1981 Aug;118(1):61–70. doi: 10.1111/j.1432-1033.1981.tb05486.x. [DOI] [PubMed] [Google Scholar]
  2. Cline K., Ettinger W. F., Theg S. M. Protein-specific energy requirements for protein transport across or into thylakoid membranes. Two lumenal proteins are transported in the absence of ATP. J Biol Chem. 1992 Feb 5;267(4):2688–2696. [PubMed] [Google Scholar]
  3. Creighton A. M., Hulford A., Mant A., Robinson D., Robinson C. A monomeric, tightly folded stromal intermediate on the delta pH-dependent thylakoidal protein transport pathway. J Biol Chem. 1995 Jan 27;270(4):1663–1669. doi: 10.1074/jbc.270.4.1663. [DOI] [PubMed] [Google Scholar]
  4. Debus R. J. The manganese and calcium ions of photosynthetic oxygen evolution. Biochim Biophys Acta. 1992 Oct 16;1102(3):269–352. doi: 10.1016/0005-2728(92)90133-m. [DOI] [PubMed] [Google Scholar]
  5. Ettinger W. F., Theg S. M. Physiologically active chloroplasts contain pools of unassembled extrinsic proteins of the photosynthetic oxygen-evolving enzyme complex in the thylakoid lumen. J Cell Biol. 1991 Oct;115(2):321–328. doi: 10.1083/jcb.115.2.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Glover J. R., Andrews D. W., Rachubinski R. A. Saccharomyces cerevisiae peroxisomal thiolase is imported as a dimer. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10541–10545. doi: 10.1073/pnas.91.22.10541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Halpin C., Elderfield P. D., James H. E., Zimmermann R., Dunbar B., Robinson C. The reaction specificities of the thylakoidal processing peptidase and Escherichia coli leader peptidase are identical. EMBO J. 1989 Dec 1;8(12):3917–3921. doi: 10.1002/j.1460-2075.1989.tb08572.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hannavy K., Rospert S., Schatz G. Protein import into mitochondria: a paradigm for the translocation of polypeptides across membranes. Curr Opin Cell Biol. 1993 Aug;5(4):694–700. doi: 10.1016/0955-0674(93)90142-d. [DOI] [PubMed] [Google Scholar]
  9. Henry R., Kapazoglou A., McCaffery M., Cline K. Differences between lumen targeting domains of chloroplast transit peptides determine pathway specificity for thylakoid transport. J Biol Chem. 1994 Apr 8;269(14):10189–10192. [PubMed] [Google Scholar]
  10. Ko K., Ko Z. W. Carboxyl-terminal sequences can influence the in vitro import and intraorganellar targeting of chloroplast protein precursors. J Biol Chem. 1992 Jul 15;267(20):13910–13916. [PubMed] [Google Scholar]
  11. Kuwabara T., Suzuki K. A prolyl endoproteinase that acts specifically on the extrinsic 18-kDa protein of photosystem II: purification and further characterization. Plant Cell Physiol. 1994 Jun;35(4):665–675. doi: 10.1093/oxfordjournals.pcp.a078642. [DOI] [PubMed] [Google Scholar]
  12. Li H. H., Merchant S. Degradation of plastocyanin in copper-deficient Chlamydomonas reinhardtii. Evidence for a protease-susceptible conformation of the apoprotein and regulated proteolysis. J Biol Chem. 1995 Oct 6;270(40):23504–23510. doi: 10.1074/jbc.270.40.23504. [DOI] [PubMed] [Google Scholar]
  13. Li X., Henry R., Yuan J., Cline K., Hoffman N. E. A chloroplast homologue of the signal recognition particle subunit SRP54 is involved in the posttranslational integration of a protein into thylakoid membranes. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3789–3793. doi: 10.1073/pnas.92.9.3789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Luzikov V. N. Proteolytic control over topogenesis of membrane proteins. FEBS Lett. 1986 May 12;200(2):259–264. doi: 10.1016/0014-5793(86)81148-6. [DOI] [PubMed] [Google Scholar]
  15. McNew J. A., Goodman J. M. An oligomeric protein is imported into peroxisomes in vivo. J Cell Biol. 1994 Dec;127(5):1245–1257. doi: 10.1083/jcb.127.5.1245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Merchant S., Bogorad L. Rapid degradation of apoplastocyanin in Cu(II)-deficient cells of Chlamydomonas reinhardtii. J Biol Chem. 1986 Dec 5;261(34):15850–15853. [PubMed] [Google Scholar]
  17. Merchant S., Selman B. R. Synthesis and Turnover of the Chloroplast Coupling Factor 1 in Chlamydomonas reinhardi. Plant Physiol. 1984 Jul;75(3):781–787. doi: 10.1104/pp.75.3.781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nakai M., Nohara T., Sugita D., Endo T. Identification and characterization of the sec-A protein homologue in the cyanobacterium Synechococcus PCC7942. Biochem Biophys Res Commun. 1994 Apr 29;200(2):844–851. doi: 10.1006/bbrc.1994.1528. [DOI] [PubMed] [Google Scholar]
  19. Nakai M., Sugita D., Omata T., Endo T. Sec-Y protein is localized in both the cytoplasmic and thylakoid membranes in the cyanobacterium Synechococcus PCC7942. Biochem Biophys Res Commun. 1993 May 28;193(1):228–234. doi: 10.1006/bbrc.1993.1613. [DOI] [PubMed] [Google Scholar]
  20. Rassow J., Hartl F. U., Guiard B., Pfanner N., Neupert W. Polypeptides traverse the mitochondrial envelope in an extended state. FEBS Lett. 1990 Nov 26;275(1-2):190–194. doi: 10.1016/0014-5793(90)81469-5. [DOI] [PubMed] [Google Scholar]
  21. Robinson C., Klösgen R. B., Herrmann R. G., Shackleton J. B. Protein translocation across the thylakoid membrane--a tale of two mechanisms. FEBS Lett. 1993 Jun 28;325(1-2):67–69. doi: 10.1016/0014-5793(93)81415-v. [DOI] [PubMed] [Google Scholar]
  22. Schatz G., Dobberstein B. Common principles of protein translocation across membranes. Science. 1996 Mar 15;271(5255):1519–1526. doi: 10.1126/science.271.5255.1519. [DOI] [PubMed] [Google Scholar]
  23. Schmidt G. W., Mishkind M. L. Rapid degradation of unassembled ribulose 1,5-bisphosphate carboxylase small subunits in chloroplasts. Proc Natl Acad Sci U S A. 1983 May;80(9):2632–2636. doi: 10.1073/pnas.80.9.2632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Theg S. M., Scott S. V. Protein import into chloroplasts. Trends Cell Biol. 1993 Jun;3(6):186–190. doi: 10.1016/0962-8924(93)90212-j. [DOI] [PubMed] [Google Scholar]
  25. Wales R., Newman B. J., Rose S. A., Pappin D., Gray J. C. Characterization of cDNA clones encoding the extrinsic 23 kDa polypeptide of the oxygen-evolving complex of photosystem II in pea. Plant Mol Biol. 1989 Nov;13(5):573–582. doi: 10.1007/BF00027317. [DOI] [PubMed] [Google Scholar]
  26. Walton P. A., Hill P. E., Subramani S. Import of stably folded proteins into peroxisomes. Mol Biol Cell. 1995 Jun;6(6):675–683. doi: 10.1091/mbc.6.6.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Yuan J., Henry R., McCaffery M., Cline K. SecA homolog in protein transport within chloroplasts: evidence for endosymbiont-derived sorting. Science. 1994 Nov 4;266(5186):796–798. doi: 10.1126/science.7973633. [DOI] [PubMed] [Google Scholar]
  28. de Vitry C., Olive J., Drapier D., Recouvreur M., Wollman F. A. Posttranslational events leading to the assembly of photosystem II protein complex: a study using photosynthesis mutants from Chlamydomonas reinhardtii. J Cell Biol. 1989 Sep;109(3):991–1006. doi: 10.1083/jcb.109.3.991. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES