Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1995 Oct;7(10):1611–1623. doi: 10.1105/tpc.7.10.1611

Composite structure of auxin response elements.

T Ulmasov 1, Z B Liu 1, G Hagen 1, T J Guilfoyle 1
PMCID: PMC161020  PMID: 7580254

Abstract

The auxin-responsive soybean GH3 gene promoter is composed of multiple auxin response elements (AuxREs), and each AuxRE contributes incrementally to the strong auxin inducibility to the promoter. Two independent AuxREs of 25 bp (D1) and 32 bp (D4) contain the sequence TGTCTC. Results presented here show that the TGTCTC element in D1 and D4 is required but not sufficient for auxin inducibility in carrot protoplast transient expression assays. Additional nucleotides upstream of TGTCTC are also required for auxin inducibility. These upstream sequences showed constitutive activity and no auxin inducibility when part or all of the TGTCTC element was mutated or deleted. In D1, the constitutive element overlaps the 5' portion of TGTCTC; in D4, the constitutive element is separated from TGTCTC. An 11-bp element in D1, CCTCGTGTCTC, conferred auxin inducibility to a minimal cauliflower mosaic virus 35S promoter in transgenic tobacco seedlings as well as in carrot protoplasts (i.e., transient expression assays). Both constitutive elements bound specifically to plant nuclear proteins, and the constitutive element in D1 bound to a recombinant soybean basic leucine zipper transcription factor with G-box specificity. To demonstrate further the composite nature of AuxREs and the ability of the TGTCTC element to confer auxin inducibility, we created a novel AuxRE by placing a yeast GAL4 DNA binding site adjacent to the TGTCTC element. Expression of a GAL4-c-Rel transactivator in the presence of this novel AuxRE resulted in auxin-inducible expression. Our results indicate that at least some AuxREs have a composite structure consisting of a constitutive element adjacent to a conserved TGTCTC element that confers auxin inducibility.

Full Text

The Full Text of this article is available as a PDF (2.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ainley W. M., Walker J. C., Nagao R. T., Key J. L. Sequence and characterization of two auxin-regulated genes from soybean. J Biol Chem. 1988 Aug 5;263(22):10658–10666. [PubMed] [Google Scholar]
  2. An G., Costa M. A., Ha S. B. Nopaline synthase promoter is wound inducible and auxin inducible. Plant Cell. 1990 Mar;2(3):225–233. doi: 10.1105/tpc.2.3.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ballas N., Wong L. M., Ke M., Theologis A. Two auxin-responsive domains interact positively to induce expression of the early indoleacetic acid-inducible gene PS-IAA4/5. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3483–3487. doi: 10.1073/pnas.92.8.3483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barnes W. M. Variable patterns of expression of luciferase in transgenic tobacco leaves. Proc Natl Acad Sci U S A. 1990 Dec;87(23):9183–9187. doi: 10.1073/pnas.87.23.9183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Conner T. W., Goekjian V. H., LaFayette P. R., Key J. L. Structure and expression of two auxin-inducible genes from Arabidopsis. Plant Mol Biol. 1990 Oct;15(4):623–632. doi: 10.1007/BF00017836. [DOI] [PubMed] [Google Scholar]
  6. Cowell I. G. Repression versus activation in the control of gene transcription. Trends Biochem Sci. 1994 Jan;19(1):38–42. doi: 10.1016/0968-0004(94)90172-4. [DOI] [PubMed] [Google Scholar]
  7. Diamond M. I., Miner J. N., Yoshinaga S. K., Yamamoto K. R. Transcription factor interactions: selectors of positive or negative regulation from a single DNA element. Science. 1990 Sep 14;249(4974):1266–1272. doi: 10.1126/science.2119054. [DOI] [PubMed] [Google Scholar]
  8. Franco A. R., Gee M. A., Guilfoyle T. J. Induction and superinduction of auxin-responsive mRNAs with auxin and protein synthesis inhibitors. J Biol Chem. 1990 Sep 15;265(26):15845–15849. [PubMed] [Google Scholar]
  9. Guiltinan M. J., Marcotte W. R., Jr, Quatrano R. S. A plant leucine zipper protein that recognizes an abscisic acid response element. Science. 1990 Oct 12;250(4978):267–271. doi: 10.1126/science.2145628. [DOI] [PubMed] [Google Scholar]
  10. Hagen G., Guilfoyle T. J. Rapid induction of selective transcription by auxins. Mol Cell Biol. 1985 Jun;5(6):1197–1203. doi: 10.1128/mcb.5.6.1197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hagen G., Martin G., Li Y., Guilfoyle T. J. Auxin-induced expression of the soybean GH3 promoter in transgenic tobacco plants. Plant Mol Biol. 1991 Sep;17(3):567–579. doi: 10.1007/BF00040658. [DOI] [PubMed] [Google Scholar]
  12. Hagen M. D. Fiscal factors, fimbrial fact, and foreskins. Fam Med. 1991 Nov-Dec;23(8):580, 583-4. [PubMed] [Google Scholar]
  13. Hong J. C., Cheong Y. H., Nagao R. T., Bahk J. D., Key J. L., Cho M. J. Isolation of two soybean G-box binding factors which interact with a G-box sequence of an auxin-responsive gene. Plant J. 1995 Aug;8(2):199–211. doi: 10.1046/j.1365-313x.1995.08020199.x. [DOI] [PubMed] [Google Scholar]
  14. Johnson A. D. The price of repression. Cell. 1995 Jun 2;81(5):655–658. doi: 10.1016/0092-8674(95)90524-3. [DOI] [PubMed] [Google Scholar]
  15. Kim Y., Buckley K., Costa M. A., An G. A 20 nucleotide upstream element is essential for the nopaline synthase (nos) promoter activity. Plant Mol Biol. 1994 Jan;24(1):105–117. doi: 10.1007/BF00040578. [DOI] [PubMed] [Google Scholar]
  16. Körber H., Strizhov N., Staiger D., Feldwisch J., Olsson O., Sandberg G., Palme K., Schell J., Koncz C. T-DNA gene 5 of Agrobacterium modulates auxin response by autoregulated synthesis of a growth hormone antagonist in plants. EMBO J. 1991 Dec;10(13):3983–3991. doi: 10.1002/j.1460-2075.1991.tb04973.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Li Y., Liu Z. B., Shi X., Hagen G., Guilfoyle T. J. An auxin-inducible element in soybean SAUR promoters. Plant Physiol. 1994 Sep;106(1):37–43. doi: 10.1104/pp.106.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Liu X., Lam E. Two binding sites for the plant transcription factor ASF-1 can respond to auxin treatments in transgenic tobacco. J Biol Chem. 1994 Jan 7;269(1):668–675. [PubMed] [Google Scholar]
  19. Liu Z. B., Ulmasov T., Shi X., Hagen G., Guilfoyle T. J. Soybean GH3 promoter contains multiple auxin-inducible elements. Plant Cell. 1994 May;6(5):645–657. doi: 10.1105/tpc.6.5.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Marcotte W. R., Jr, Russell S. H., Quatrano R. S. Abscisic acid-responsive sequences from the em gene of wheat. Plant Cell. 1989 Oct;1(10):969–976. doi: 10.1105/tpc.1.10.969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. McClure B. A., Hagen G., Brown C. S., Gee M. A., Guilfoyle T. J. Transcription, organization, and sequence of an auxin-regulated gene cluster in soybean. Plant Cell. 1989 Feb;1(2):229–239. doi: 10.1105/tpc.1.2.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Morin P. J., Gilmore T. D. The C terminus of the NF-kappa B p50 precursor and an I kappa B isoform contain transcription activation domains. Nucleic Acids Res. 1992 May 25;20(10):2453–2458. doi: 10.1093/nar/20.10.2453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nagao R. T., Goekjian V. H., Hong J. C., Key J. L. Identification of protein-binding DNA sequences in an auxin-regulated gene of soybean. Plant Mol Biol. 1993 Mar;21(6):1147–1162. doi: 10.1007/BF00023610. [DOI] [PubMed] [Google Scholar]
  24. Oeller P. W., Keller J. A., Parks J. E., Silbert J. E., Theologis A. Structural characterization of the early indoleacetic acid-inducible genes, PS-IAA4/5 and PS-IAA6, of pea (Pisum sativum L.). J Mol Biol. 1993 Oct 20;233(4):789–798. doi: 10.1006/jmbi.1993.1555. [DOI] [PubMed] [Google Scholar]
  25. Qin X. F., Holuigue L., Horvath D. M., Chua N. H. Immediate early transcription activation by salicylic acid via the cauliflower mosaic virus as-1 element. Plant Cell. 1994 Jun;6(6):863–874. doi: 10.1105/tpc.6.6.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Roberts S. G., Green M. R. Transcription. Dichotomous regulators. Nature. 1995 May 11;375(6527):105–106. doi: 10.1038/375105a0. [DOI] [PubMed] [Google Scholar]
  27. Rogers J. C., Rogers S. W. Definition and functional implications of gibberellin and abscisic acid cis-acting hormone response complexes. Plant Cell. 1992 Nov;4(11):1443–1451. doi: 10.1105/tpc.4.11.1443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Shen Q., Ho T. H. Functional dissection of an abscisic acid (ABA)-inducible gene reveals two independent ABA-responsive complexes each containing a G-box and a novel cis-acting element. Plant Cell. 1995 Mar;7(3):295–307. doi: 10.1105/tpc.7.3.295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Vashee S., Xu H., Johnston S. A., Kodadek T. How do "Zn2 cys6" proteins distinguish between similar upstream activation sites? Comparison of the DNA-binding specificity of the GAL4 protein in vitro and in vivo. J Biol Chem. 1993 Nov 25;268(33):24699–24706. [PubMed] [Google Scholar]
  30. Yamaguchi-Shinozaki K., Shinozaki K. A novel Arabidopsis DNA binding protein contains the conserved motif of HMG-box proteins. Nucleic Acids Res. 1992 Dec 25;20(24):6737–6737. doi: 10.1093/nar/20.24.6737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Zhang B., Singh K. B. ocs element promoter sequences are activated by auxin and salicylic acid in Arabidopsis. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2507–2511. doi: 10.1073/pnas.91.7.2507. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES