Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1995 Oct;7(10):1723–1734. doi: 10.1105/tpc.7.10.1723

Analysis of the role of 5' and 3' flanking sequence elements upon in vivo expression of the plant tRNATrp genes.

B Ulmasov 1, W Folk 1
PMCID: PMC161033  PMID: 7580260

Abstract

We have isolated the majority (seven) of the tRNA(Trp) genes of Arabidopsis and have studied the 5' and 3' flanking sequence requirements for their efficient expression in vivo by using an assay requiring translational suppression of the luciferase reporter gene. The expressed tRNA(Trp) genes contain no highly conserved 5' flanking sequences; however, these sequences are distinctly AT rich, contain several possible TATA elements, and are bound in vitro by recombinant plant TATA binding protein. Replacement of the natural 5' flanking sequences with three different sequences lacking TATA elements reduced expression in vivo up to 10-fold; the same effect was observed when the TATA elements of the natural 5' sequences were inactivated by point mutations. Introduction of a single TATA element from the adenovirus major late promoter into an artificial 5' flanking region of the tRNA(Trp) gene enhanced expression in vivo when the TATA element was placed at position -32 relative to the first nucleotide of the mature tRNA sequence, but not when it was placed at position -24. Primer extension analyses of in vitro transcripts revealed that the position of the TATA element helps dictate the start site of transcription. Efficient expression of the tRNA genes in vivo also required 3' flanking sequences capable of terminating transcription.

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allison D. S., Hall B. D. Effects of alterations in the 3' flanking sequence on in vivo and in vitro expression of the yeast SUP4-o tRNATyr gene. EMBO J. 1985 Oct;4(10):2657–2664. doi: 10.1002/j.1460-2075.1985.tb03984.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barnes W. M. Variable patterns of expression of luciferase in transgenic tobacco leaves. Proc Natl Acad Sci U S A. 1990 Dec;87(23):9183–9187. doi: 10.1073/pnas.87.23.9183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bartholomew B., Durkovich D., Kassavetis G. A., Geiduschek E. P. Orientation and topography of RNA polymerase III in transcription complexes. Mol Cell Biol. 1993 Feb;13(2):942–952. doi: 10.1128/mcb.13.2.942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beier D., Stange N., Gross H. J., Beier H. Nuclear tRNA(Tyr) genes are highly amplified at a single chromosomal site in the genome of Arabidopsis thaliana. Mol Gen Genet. 1991 Jan;225(1):72–80. doi: 10.1007/BF00282644. [DOI] [PubMed] [Google Scholar]
  5. Bogenhagen D. F., Brown D. D. Nucleotide sequences in Xenopus 5S DNA required for transcription termination. Cell. 1981 Apr;24(1):261–270. doi: 10.1016/0092-8674(81)90522-5. [DOI] [PubMed] [Google Scholar]
  6. Bourque J. E., Folk W. R. Suppression of gene expression in plant cells utilizing antisense sequences transcribed by RNA polymerase III. Plant Mol Biol. 1992 Jul;19(4):641–647. doi: 10.1007/BF00026790. [DOI] [PubMed] [Google Scholar]
  7. Burnol A. F., Margottin F., Schultz P., Marsolier M. C., Oudet P., Sentenac A. Basal promoter and enhancer element of yeast U6 snRNA gene. J Mol Biol. 1993 Oct 20;233(4):644–658. doi: 10.1006/jmbi.1993.1542. [DOI] [PubMed] [Google Scholar]
  8. Carneiro V. T., Pelletier G., Small I. Transfer RNA-mediated suppression of stop codons in protoplasts and transgenic plants. Plant Mol Biol. 1993 Jul;22(4):681–690. doi: 10.1007/BF00047408. [DOI] [PubMed] [Google Scholar]
  9. Chalker D. L., Sandmeyer S. B. Sites of RNA polymerase III transcription initiation and Ty3 integration at the U6 gene are positioned by the TATA box. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):4927–4931. doi: 10.1073/pnas.90.11.4927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cormack B. P., Struhl K. The TATA-binding protein is required for transcription by all three nuclear RNA polymerases in yeast cells. Cell. 1992 May 15;69(4):685–696. doi: 10.1016/0092-8674(92)90232-2. [DOI] [PubMed] [Google Scholar]
  11. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  12. Franklin S., Lin T. Y., Folk W. R. Construction and expression of nonsense suppressor tRNAs which function in plant cells. Plant J. 1992 Jul;2(4):583–588. doi: 10.1046/j.1365-313x.1992.t01-27-00999.x. [DOI] [PubMed] [Google Scholar]
  13. Gerlach V. L., Whitehall S. K., Geiduschek E. P., Brow D. A. TFIIIB placement on a yeast U6 RNA gene in vivo is directed primarily by TFIIIC rather than by sequence-specific DNA contacts. Mol Cell Biol. 1995 Mar;15(3):1455–1466. doi: 10.1128/mcb.15.3.1455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ghosh K., Ghosh H. P. Structure and function of tryptophan tRNA from wheat germ. Nucleic Acids Res. 1984 Jun 25;12(12):4997–5003. doi: 10.1093/nar/12.12.4997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Goodall G. J., Wiebauer K., Filipowicz W. Analysis of pre-mRNA processing in transfected plant protoplasts. Methods Enzymol. 1990;181:148–161. doi: 10.1016/0076-6879(90)81117-d. [DOI] [PubMed] [Google Scholar]
  16. Lin S., Kowalski D. DNA helical instability facilitates initiation at the SV40 replication origin. J Mol Biol. 1994 Jan 14;235(2):496–507. doi: 10.1006/jmbi.1994.1009. [DOI] [PubMed] [Google Scholar]
  17. Lin T. Y., March R., Scanlon S. R., Folk W. R. Isolation and transcriptional competence of three tRNA(Trp) genes from Arabidopsis thaliana L. Plant Mol Biol. 1992 Jan;18(1):159–160. doi: 10.1007/BF00018472. [DOI] [PubMed] [Google Scholar]
  18. Luehrsen K. R., de Wet J. R., Walbot V. Transient expression analysis in plants using firefly luciferase reporter gene. Methods Enzymol. 1992;216:397–414. doi: 10.1016/0076-6879(92)16037-k. [DOI] [PubMed] [Google Scholar]
  19. Margottin F., Dujardin G., Gérard M., Egly J. M., Huet J., Sentenac A. Participation of the TATA factor in transcription of the yeast U6 gene by RNA polymerase C. Science. 1991 Jan 25;251(4992):424–426. doi: 10.1126/science.1989075. [DOI] [PubMed] [Google Scholar]
  20. Marschalek R., Dingermann T. Identification of a protein factor binding to the 5'-flanking region of a tRNA gene and being involved in modulation of tRNA gene transcription in vivo in Saccharomyces cerevisiae. Nucleic Acids Res. 1988 Jul 25;16(14B):6737–6752. doi: 10.1093/nar/16.14.6737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mukumoto F., Hirose S., Imaseki H., Yamazaki K. DNA sequence requirement of a TATA element-binding protein from Arabidopsis for transcription in vitro. Plant Mol Biol. 1993 Dec;23(5):995–1003. doi: 10.1007/BF00021814. [DOI] [PubMed] [Google Scholar]
  22. Natale D. A., Schubert A. E., Kowalski D. DNA helical stability accounts for mutational defects in a yeast replication origin. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2654–2658. doi: 10.1073/pnas.89.7.2654. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Palida F. A., Hale C., Sprague K. U. Transcription of a silkworm tRNA(cAla) gene is directed by two AT-rich upstream sequence elements. Nucleic Acids Res. 1993 Dec 25;21(25):5875–5881. doi: 10.1093/nar/21.25.5875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Raymond G. J., Johnson J. D. The role of non-coding DNA sequences in transcription and processing of a yeast tRNA. Nucleic Acids Res. 1983 Sep 10;11(17):5969–5988. doi: 10.1093/nar/11.17.5969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Scanlon S. R., Folk W. R. Nuclease Bal-31 mapping of proteins bound to a tRNA(tyr) gene in SV40 minichromosomes. Nucleic Acids Res. 1991 Dec;19(25):7185–7192. doi: 10.1093/nar/19.25.7185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schultz D. W., Yarus M. A simple and sensitive in vivo luciferase assay for tRNA-mediated nonsense suppression. J Bacteriol. 1990 Feb;172(2):595–602. doi: 10.1128/jb.172.2.595-602.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schultz M. C., Reeder R. H., Hahn S. Variants of the TATA-binding protein can distinguish subsets of RNA polymerase I, II, and III promoters. Cell. 1992 May 15;69(4):697–702. doi: 10.1016/0092-8674(92)90233-3. [DOI] [PubMed] [Google Scholar]
  28. Shaw K. J., Olson M. V. Effects of altered 5'-flanking sequences on the in vivo expression of a Saccharomyces cerevisiae tRNATyr gene. Mol Cell Biol. 1984 Apr;4(4):657–665. doi: 10.1128/mcb.4.4.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tapping R. I., Syroid D. E., Bilan P. T., Capone J. P. The 5' flanking sequence negatively modulates the in vivo expression and in vitro transcription of a human tRNA gene. Nucleic Acids Res. 1993 Sep 25;21(19):4476–4482. doi: 10.1093/nar/21.19.4476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Waldron C., Wills N., Gesteland R. F. Plant tRNA genes: putative soybean genes for tRNAasp and tRNAmet. J Mol Appl Genet. 1985;3(1):7–17. [PubMed] [Google Scholar]
  31. Wang X., Folk W. R. Termination of transcription by RNA polymerase III from wheat germ. J Biol Chem. 1994 Feb 18;269(7):4993–5004. [PubMed] [Google Scholar]
  32. White R. J., Jackson S. P., Rigby P. W. A role for the TATA-box-binding protein component of the transcription factor IID complex as a general RNA polymerase III transcription factor. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1949–1953. doi: 10.1073/pnas.89.5.1949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Willis I. M. RNA polymerase III. Genes, factors and transcriptional specificity. Eur J Biochem. 1993 Feb 15;212(1):1–11. doi: 10.1111/j.1432-1033.1993.tb17626.x. [DOI] [PubMed] [Google Scholar]
  34. Yoshinaga S. K., Boulanger P. A., Berk A. J. Resolution of human transcription factor TFIIIC into two functional components. Proc Natl Acad Sci U S A. 1987 Jun;84(11):3585–3589. doi: 10.1073/pnas.84.11.3585. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES