Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1995 Nov;7(11):1869–1878. doi: 10.1105/tpc.7.11.1869

The cAMP-dependent protein kinase catalytic subunit is required for appressorium formation and pathogenesis by the rice blast pathogen Magnaporthe grisea.

T K Mitchell 1, R A Dean 1
PMCID: PMC161045  PMID: 8535140

Abstract

Magnaporthe grisea, the causal agent of rice blast disease, differentiates a specialized infection cell, an appressorium, that is required for infection of its host. Previously, cAMP was implicated in the endogenous signaling pathway leading to appressorium formation. To obtain direct evidence for the role of cAMP in appressorium formation, the gene encoding the catalytic subunit of the cAMP-dependent protein kinase (cpkA) was cloned, sequenced, and disrupted. Polymerase chain reaction primers designed after highly conserved regions in the same gene from other organisms were used to amplify genomic DNA fragments. The cloned amplification products were used to identify genomic clones. DNA blot analysis indicated that cpkA is present as a single copy in the genome. cpkA consists of 1894 bp, including three short introns sufficient to encode a protein of 539 amino acids with a predicted molecular mass of 60.7 kD. The deduced peptide shares > 45% identity with other catalytic subunits and contains all functional motifs and residues with the addition of a glutamine-rich region at the N terminus. Two transformants, L5 and T-182, in which cpkA had been replaced with a hygromycin resistance gene cassette, were unable to produce appressoria, could not be induced to form appressoria by cAMP, and were nonpathogenic on susceptible rice, even when leaves were abraded. These results were confirmed by analysis of 57 progeny from a cross between transformant L5 and the wild-type laboratory strain 70-6. Other aspects of growth and development, including vegetative growth as well as asexual and sexual competence, were unaffected when measured in vitro. These results provide direct evidence that the cAMP-dependent protein kinase is necessary for infection-related morphogenesis and pathogenesis in a phytopathogenic fungus.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Foulkes N. S., Mellström B., Benusiglio E., Sassone-Corsi P. Developmental switch of CREM function during spermatogenesis: from antagonist to activator. Nature. 1992 Jan 2;355(6355):80–84. doi: 10.1038/355080a0. [DOI] [PubMed] [Google Scholar]
  2. Gerber H. P., Seipel K., Georgiev O., Höfferer M., Hug M., Rusconi S., Schaffner W. Transcriptional activation modulated by homopolymeric glutamine and proline stretches. Science. 1994 Feb 11;263(5148):808–811. doi: 10.1126/science.8303297. [DOI] [PubMed] [Google Scholar]
  3. Gerisch G. Cyclic AMP and other signals controlling cell development and differentiation in Dictyostelium. Annu Rev Biochem. 1987;56:853–879. doi: 10.1146/annurev.bi.56.070187.004225. [DOI] [PubMed] [Google Scholar]
  4. Gill G., Pascal E., Tseng Z. H., Tjian R. A glutamine-rich hydrophobic patch in transcription factor Sp1 contacts the dTAFII110 component of the Drosophila TFIID complex and mediates transcriptional activation. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):192–196. doi: 10.1073/pnas.91.1.192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hamer J. E., Howard R. J., Chumley F. G., Valent B. A mechanism for surface attachment in spores of a plant pathogenic fungus. Science. 1988 Jan 15;239(4837):288–290. doi: 10.1126/science.239.4837.288. [DOI] [PubMed] [Google Scholar]
  6. Howard R. J., Ferrari M. A., Roach D. H., Money N. P. Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11281–11284. doi: 10.1073/pnas.88.24.11281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lee Y. H., Dean R. A. cAMP Regulates Infection Structure Formation in the Plant Pathogenic Fungus Magnaporthe grisea. Plant Cell. 1993 Jun;5(6):693–700. doi: 10.1105/tpc.5.6.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Leung H., Lehtinen U., Karjalainen R., Skinner D., Tooley P., Leong S., Ellingboe A. Transformation of the rice blast fungus Magnaporthe grisea to hygromycin B resistance. Curr Genet. 1990 May;17(5):409–411. doi: 10.1007/BF00334519. [DOI] [PubMed] [Google Scholar]
  9. Maeda T., Watanabe Y., Kunitomo H., Yamamoto M. Cloning of the pka1 gene encoding the catalytic subunit of the cAMP-dependent protein kinase in Schizosaccharomyces pombe. J Biol Chem. 1994 Apr 1;269(13):9632–9637. [PubMed] [Google Scholar]
  10. Punt P. J., Oliver R. P., Dingemanse M. A., Pouwels P. H., van den Hondel C. A. Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli. Gene. 1987;56(1):117–124. doi: 10.1016/0378-1119(87)90164-8. [DOI] [PubMed] [Google Scholar]
  11. Sweigard J. A., Chumley F. G., Valent B. Disruption of a Magnaporthe grisea cutinase gene. Mol Gen Genet. 1992 Mar;232(2):183–190. [PubMed] [Google Scholar]
  12. Tanaka M., Clouston W. M., Herr W. The Oct-2 glutamine-rich and proline-rich activation domains can synergize with each other or duplicates of themselves to activate transcription. Mol Cell Biol. 1994 Sep;14(9):6046–6055. doi: 10.1128/mcb.14.9.6046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Taylor S. S., Zheng J., Radzio-Andzelm E., Knighton D. R., Ten Eyck L. F., Sowadski J. M., Herberg F. W., Yonemoto W. M. cAMP-dependent protein kinase defines a family of enzymes. Philos Trans R Soc Lond B Biol Sci. 1993 Jun 29;340(1293):315–324. doi: 10.1098/rstb.1993.0073. [DOI] [PubMed] [Google Scholar]
  14. Toda T., Cameron S., Sass P., Zoller M., Wigler M. Three different genes in S. cerevisiae encode the catalytic subunits of the cAMP-dependent protein kinase. Cell. 1987 Jul 17;50(2):277–287. doi: 10.1016/0092-8674(87)90223-6. [DOI] [PubMed] [Google Scholar]
  15. Wiemann S., Kinzel V., Pyerin W. Isoform C beta 2, an unusual form of the bovine catalytic subunit of cAMP-dependent protein kinase. J Biol Chem. 1991 Mar 15;266(8):5140–5146. [PubMed] [Google Scholar]
  16. Yelton M. M., Hamer J. E., Timberlake W. E. Transformation of Aspergillus nidulans by using a trpC plasmid. Proc Natl Acad Sci U S A. 1984 Mar;81(5):1470–1474. doi: 10.1073/pnas.81.5.1470. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES