Abstract
The accumulation of free lysine in tobacco seed triggers the stimulation of lysine-ketoglutarate reductase, an enzyme that acts in lysine catabolism. The mechanism of lysine-ketoglutarate reductase stimulation was studied in two different systems: (1) developing seeds of wild-type plants in which the low basal lysine-ketoglutarate reductase activity can be stimulated by the exogenous addition of lysine; and (2) developing seeds of transgenic tobacco plants expressing a bacterial dihydrodipicolinate synthase in which lysine-ketoglutarate reductase activity is stimulated by endogenous lysine overproduction. In both systems, the stimulation of lysine-ketoglutarate reductase activity was significantly reduced when treated with the Ca2+ chelator EGTA. Moreover, the inhibitory effect of EGTA was overcome by the addition of Ca2+ but not Mg2+, suggesting that the lysine-dependent activation of lysine-ketoglutarate reductase requires Ca2+. This was further confirmed by a significant stimulation of lysine-ketoglutarate reductase activity following the treatment of wild-type seeds with ionomycin (an ionophore that increases Ca2+ flow into the cytoplasm). In addition, treatment of wild-type seeds with the protein phosphatase inhibitor okadaic acid triggered a significant induction in lysine-ketoglutarate reductase activity, whereas treatment of the transgenic seeds with the protein kinase inhibitor K-252a caused a significant reduction in its activity. Thus, we conclude that the stimulation of lysine-ketoglutarate reductase activity by lysine in tobacco seed operates through an intracellular signaling cascade mediated by Ca2+ and protein phosphorylation.
Full Text
The Full Text of this article is available as a PDF (716.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alderson A., Sabelli P. A., Dickinson J. R., Cole D., Richardson M., Kreis M., Shewry P. R., Halford N. G. Complementation of snf1, a mutation affecting global regulation of carbon metabolism in yeast, by a plant protein kinase cDNA. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8602–8605. doi: 10.1073/pnas.88.19.8602. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bakrim N., Echevarria C., Cretin C., Arrio-Dupont M., Pierre J. N., Vidal J., Chollet R., Gadal P. Regulatory phosphorylation of Sorghum leaf phosphoenolpyruvate carboxylase. Identification of the protein-serine kinase and some elements of the signal-transduction cascade. Eur J Biochem. 1992 Mar 1;204(2):821–830. doi: 10.1111/j.1432-1033.1992.tb16701.x. [DOI] [PubMed] [Google Scholar]
- Baur B., Dietz K. J., Winter K. Regulatory protein phosphorylation of phosphoenolpyruvate carboxylase in the facultative crassulacean-acid-metabolism plant Mesembryanthemum crystallinum L. Eur J Biochem. 1992 Oct 1;209(1):95–101. doi: 10.1111/j.1432-1033.1992.tb17265.x. [DOI] [PubMed] [Google Scholar]
- Bhattacharjee J. K. alpha-Aminoadipate pathway for the biosynthesis of lysine in lower eukaryotes. Crit Rev Microbiol. 1985;12(2):131–151. doi: 10.3109/10408418509104427. [DOI] [PubMed] [Google Scholar]
- Bowler C., Chua N. H. Emerging themes of plant signal transduction. Plant Cell. 1994 Nov;6(11):1529–1541. doi: 10.1105/tpc.6.11.1529. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Brochetto-Braga M. R., Leite A., Arruda P. Partial purification and characterization of lysine-ketoglutarate reductase in normal and opaque-2 maize endosperms. Plant Physiol. 1992 Mar;98(3):1139–1147. doi: 10.1104/pp.98.3.1139. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carricarte V. C., Bianchini G. M., Muschietti J. P., Téllez-Iñn M. T., Perticari A., Torres N., Flawiá M. M. Adenylate cyclase activity in a higher plant, alfalfa (Medicago sativa). Biochem J. 1988 Feb 1;249(3):807–811. doi: 10.1042/bj2490807. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carter P. J., Nimmo H. G., Fewson C. A., Wilkins M. B. Circadian rhythms in the activity of a plant protein kinase. EMBO J. 1991 Aug;10(8):2063–2068. doi: 10.1002/j.1460-2075.1991.tb07737.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clapham D. E. Calcium signaling. Cell. 1995 Jan 27;80(2):259–268. doi: 10.1016/0092-8674(95)90408-5. [DOI] [PubMed] [Google Scholar]
- Cohen P., Holmes C. F., Tsukitani Y. Okadaic acid: a new probe for the study of cellular regulation. Trends Biochem Sci. 1990 Mar;15(3):98–102. doi: 10.1016/0968-0004(90)90192-e. [DOI] [PubMed] [Google Scholar]
- Galili G. Regulation of Lysine and Threonine Synthesis. Plant Cell. 1995 Jul;7(7):899–906. doi: 10.1105/tpc.7.7.899. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Halford N. G., Vicente-Carbajosa J., Sabelli P. A., Shewry P. R., Hannappel U., Kreis M. Molecular analyses of a barley multigene family homologous to the yeast protein kinase gene SNF1. Plant J. 1992 Sep;2(5):791–797. [PubMed] [Google Scholar]
- Haystead T. A., Sim A. T., Carling D., Honnor R. C., Tsukitani Y., Cohen P., Hardie D. G. Effects of the tumour promoter okadaic acid on intracellular protein phosphorylation and metabolism. Nature. 1989 Jan 5;337(6202):78–81. doi: 10.1038/337078a0. [DOI] [PubMed] [Google Scholar]
- Haystead T. A., Weiel J. E., Litchfield D. W., Tsukitani Y., Fischer E. H., Krebs E. G. Okadaic acid mimics the action of insulin in stimulating protein kinase activity in isolated adipocytes. The role of protein phosphatase 2a in attenuation of the signal. J Biol Chem. 1990 Sep 25;265(27):16571–16580. [PubMed] [Google Scholar]
- Hinnebusch A. G. Mechanisms of gene regulation in the general control of amino acid biosynthesis in Saccharomyces cerevisiae. Microbiol Rev. 1988 Jun;52(2):248–273. doi: 10.1128/mr.52.2.248-273.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hunter T. Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell. 1995 Jan 27;80(2):225–236. doi: 10.1016/0092-8674(95)90405-0. [DOI] [PubMed] [Google Scholar]
- Karchi H., Shaul O., Galili G. Lysine synthesis and catabolism are coordinately regulated during tobacco seed development. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2577–2581. doi: 10.1073/pnas.91.7.2577. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuznetsov G., Brostrom M. A., Brostrom C. O. Demonstration of a calcium requirement for secretory protein processing and export. Differential effects of calcium and dithiothreitol. J Biol Chem. 1992 Feb 25;267(6):3932–3939. [PubMed] [Google Scholar]
- Liu C., Hermann T. E. Characterization of ionomycin as a calcium ionophore. J Biol Chem. 1978 Sep 10;253(17):5892–5894. [PubMed] [Google Scholar]
- Ma H. Protein phosphorylation in plants: enzymes, substrates and regulators. Trends Genet. 1993 Jul;9(7):228–230. doi: 10.1016/0168-9525(93)90075-s. [DOI] [PubMed] [Google Scholar]
- MacKintosh C., MacKintosh R. W. Inhibitors of protein kinases and phosphatases. Trends Biochem Sci. 1994 Nov;19(11):444–448. doi: 10.1016/0968-0004(94)90127-9. [DOI] [PubMed] [Google Scholar]
- Mackintosh R. W., Davies S. P., Clarke P. R., Weekes J., Gillespie J. G., Gibb B. J., Hardie D. G. Evidence for a protein kinase cascade in higher plants. 3-Hydroxy-3-methylglutaryl-CoA reductase kinase. Eur J Biochem. 1992 Nov 1;209(3):923–931. doi: 10.1111/j.1432-1033.1992.tb17364.x. [DOI] [PubMed] [Google Scholar]
- Markovitz P. J., Chuang D. T., Cox R. P. Familial hyperlysinemias. Purification and characterization of the bifunctional aminoadipic semialdehyde synthase with lysine-ketoglutarate reductase and saccharopine dehydrogenase activities. J Biol Chem. 1984 Oct 10;259(19):11643–11646. [PubMed] [Google Scholar]
- Müller M., Knudsen S. The nitrogen response of a barley C-hordein promoter is controlled by positive and negative regulation of the GCN4 and endosperm box. Plant J. 1993 Aug;4(2):343–355. doi: 10.1046/j.1365-313x.1993.04020343.x. [DOI] [PubMed] [Google Scholar]
- Neumann G. M., Condron R., Thomas I., Polya G. M. Purification and sequencing of a family of wheat lipid transfer protein homologues phosphorylated by plant calcium-dependent protein kinase. Biochim Biophys Acta. 1994 Dec 14;1209(2):183–190. doi: 10.1016/0167-4838(94)90183-x. [DOI] [PubMed] [Google Scholar]
- Nimmo H. G., Carter P. J., Fewson C. A., McNaughton G. A., Nimmo G. A., Wilkins M. B. Regulation of phosphoenolpyruvate carboxylase: an example of signal transduction via protein phosphorylation in higher plants. Adv Enzyme Regul. 1990;30:121–131. doi: 10.1016/0065-2571(90)90013-r. [DOI] [PubMed] [Google Scholar]
- Poovaiah B. W., Reddy A. S. Calcium and signal transduction in plants. CRC Crit Rev Plant Sci. 1993;12(3):185–211. doi: 10.1080/07352689309701901. [DOI] [PubMed] [Google Scholar]
- Poovaiah B. W., Reddy A. S. Calcium messenger system in plants. CRC Crit Rev Plant Sci. 1987;6(1):47–103. doi: 10.1080/07352688709382247. [DOI] [PubMed] [Google Scholar]
- Raz V., Fluhr R. Calcium Requirement for Ethylene-Dependent Responses. Plant Cell. 1992 Sep;4(9):1123–1130. doi: 10.1105/tpc.4.9.1123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saito Y., Vandenheede J. R., Cohen P. The mechanism by which epidermal growth factor inhibits glycogen synthase kinase 3 in A431 cells. Biochem J. 1994 Oct 1;303(Pt 1):27–31. doi: 10.1042/bj3030027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yugari Y., Gilvarg C. The condensation step in diaminopimelate synthesis. J Biol Chem. 1965 Dec;240(12):4710–4716. [PubMed] [Google Scholar]