Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1995 Dec;7(12):2081–2090. doi: 10.1105/tpc.7.12.2081

Chlorophyll Synthesis in a Deetiolated (det340) Mutant of Arabidopsis without NADPH-Protochlorophyllide (PChlide) Oxidoreductase (POR) A and Photoactive PChlide-F655.

N Lebedev 1, B Van Cleve 1, G Armstrong 1, K Apel 1
PMCID: PMC161063  PMID: 12242369

Abstract

Chlorophyll (Chl) synthesis in Arabidopsis is controlled by two light-dependent NADPH-protochlorophyllide (PChlide) oxidoreductases (PORs), one (POR A) that is active transiently in etiolated seedlings at the beginning of illumination and another (POR B) that also operates in green plants. The function of these two enzymes during the light-induced greening of dark-grown seedlings has been studied in the wild type and a deetiolated (det340) mutant of Arabidopsis. One of the consequences of the det mutation is that POR A is constitutively down-regulated, and therefore, synthesis of the POR A enzyme is shut off. When grown in the dark, the det340 mutant lacks POR A and the photoactive PChlide-F655 species but maintains the second PChlide reductase, POR B. Previously, photoactive PChlide-F655 has often been considered to be the only PChlide form that leads to Chl formation. Despite its deficiency in POR A and photoactive PChlide-F655, the det340 mutant is able to green when placed in the light. Chl accumulation, however, proceeds abnormally. At the beginning of illumination, seedlings of det340 mutants are extremely susceptible to photooxidative damage and accumulate Chl only at extremely low light intensities. They form core complexes of photosystems I and II but are almost completely devoid of light-harvesting structures. The results of this study demonstrate that in addition to the route of Chl synthesis that has been studied extensively in illuminated dark-grown wild-type plants, a second branch of Chl synthesis exists that is driven by POR B and does not require POR A.

Full Text

The Full Text of this article is available as a PDF (2.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ang L. H., Deng X. W. Regulatory hierarchy of photomorphogenic loci: allele-specific and light-dependent interaction between the HY5 and COP1 loci. Plant Cell. 1994 May;6(5):613–628. doi: 10.1105/tpc.6.5.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Apel K., Santel H. J., Redlinger T. E., Falk H. The protochlorophyllide holochrome of barley (Hordeum vulgare L.). Isolation and characterization of the NADPH:protochlorophyllide oxidoreductase. Eur J Biochem. 1980 Oct;111(1):251–258. doi: 10.1111/j.1432-1033.1980.tb06100.x. [DOI] [PubMed] [Google Scholar]
  3. Apel K. The protochlorophyllide holochrome of barley (Hordeum vulgare L.). Phytochrome-induced decrease of translatable mRNA coding for the NADPH: protochlorophyllide oxidoreductase. Eur J Biochem. 1981 Nov;120(1):89–93. doi: 10.1111/j.1432-1033.1981.tb05673.x. [DOI] [PubMed] [Google Scholar]
  4. Armstrong G. A., Runge S., Frick G., Sperling U., Apel K. Identification of NADPH:protochlorophyllide oxidoreductases A and B: a branched pathway for light-dependent chlorophyll biosynthesis in Arabidopsis thaliana. Plant Physiol. 1995 Aug;108(4):1505–1517. doi: 10.1104/pp.108.4.1505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Benli M., Schulz R., Apel K. Effect of light on the NADPH-protochlorophyllide oxidoreductase of Arabidopsis thaliana. Plant Mol Biol. 1991 Apr;16(4):615–625. doi: 10.1007/BF00023426. [DOI] [PubMed] [Google Scholar]
  6. Chory J., Peto C., Feinbaum R., Pratt L., Ausubel F. Arabidopsis thaliana mutant that develops as a light-grown plant in the absence of light. Cell. 1989 Sep 8;58(5):991–999. doi: 10.1016/0092-8674(89)90950-1. [DOI] [PubMed] [Google Scholar]
  7. Forreiter C., Apel K. Light-independent and light-dependent protochlorophyllide-reducing activities and two distinct NADPH-protochlorophyllide oxidoreductase polypeptides in mountain pine (Pinus mugo). Planta. 1993;190(4):536–545. doi: 10.1007/BF00224793. [DOI] [PubMed] [Google Scholar]
  8. Franck F., Strzalka K. Detection of the photoactive protochlorophyllide-protein complex in the light during the greening of barley. FEBS Lett. 1992 Aug 31;309(1):73–77. doi: 10.1016/0014-5793(92)80742-y. [DOI] [PubMed] [Google Scholar]
  9. Griffiths W. T. Reconstitution of chlorophyllide formation by isolated etioplast membranes. Biochem J. 1978 Sep 15;174(3):681–692. doi: 10.1042/bj1740681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Grimm B., Kruse E., Kloppstech K. Transiently expressed early light-inducible thylakoid proteins share transmembrane domains with light-harvesting chlorophyll binding proteins. Plant Mol Biol. 1989 Nov;13(5):583–593. doi: 10.1007/BF00027318. [DOI] [PubMed] [Google Scholar]
  11. Holtorf H., Reinbothe S., Reinbothe C., Bereza B., Apel K. Two routes of chlorophyllide synthesis that are differentially regulated by light in barley (Hordeum vulgare L.). Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3254–3258. doi: 10.1073/pnas.92.8.3254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Horton P., Ruban A. V., Walters R. G. Regulation of Light Harvesting in Green Plants (Indication by Nonphotochemical Quenching of Chlorophyll Fluorescence). Plant Physiol. 1994 Oct;106(2):415–420. doi: 10.1104/pp.106.2.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jansson S. The light-harvesting chlorophyll a/b-binding proteins. Biochim Biophys Acta. 1994 Feb 8;1184(1):1–19. doi: 10.1016/0005-2728(94)90148-1. [DOI] [PubMed] [Google Scholar]
  14. Król M., Spangfort M. D., Huner N. P., Oquist G., Gustafsson P., Jansson S. Chlorophyll a/b-binding proteins, pigment conversions, and early light-induced proteins in a chlorophyll b-less barley mutant. Plant Physiol. 1995 Mar;107(3):873–883. doi: 10.1104/pp.107.3.873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Leutwiler L. S., Meyerowitz E. M., Tobin E. M. Structure and expression of three light-harvesting chlorophyll a/b-binding protein genes in Arabidopsis thaliana. Nucleic Acids Res. 1986 May 27;14(10):4051–4064. doi: 10.1093/nar/14.10.4051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Meyer G., Kloppstech K. A rapidly light-induced chloroplast protein with a high turnover coded for by pea nuclear DNA. Eur J Biochem. 1984 Jan 2;138(1):201–207. doi: 10.1111/j.1432-1033.1984.tb07900.x. [DOI] [PubMed] [Google Scholar]
  17. Miséra S., Müller A. J., Weiland-Heidecker U., Jürgens G. The FUSCA genes of Arabidopsis: negative regulators of light responses. Mol Gen Genet. 1994 Aug 2;244(3):242–252. doi: 10.1007/BF00285451. [DOI] [PubMed] [Google Scholar]
  18. Oliver R. P., Griffiths W. T. Pigment-protein complexes of illuminated etiolated leaves. Plant Physiol. 1982 Oct;70(4):1019–1025. doi: 10.1104/pp.70.4.1019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Redlinger T., Gantt E. A M(r) 95,000 polypeptide in Porphyridium cruentum phycobilisomes and thylakoids: Possible function in linkage of phycobilisomes to thylakoids and in energy transfer. Proc Natl Acad Sci U S A. 1982 Sep;79(18):5542–5546. doi: 10.1073/pnas.79.18.5542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Runge S., van Cleve B., Lebedev N., Armstrong G., Apel K. Isolation and classification of chlorophyll-deficient xantha mutants of Arabidopsis thaliana. Planta. 1995;197(3):490–500. doi: 10.1007/BF00196671. [DOI] [PubMed] [Google Scholar]
  21. Santel H. J., Apel K. The protochlorophyllide holochrome of barley (Hordeum vulgare L.). The effect of light on the NADPH:protochlorophyllide oxidoreductase. Eur J Biochem. 1981 Nov;120(1):95–103. doi: 10.1111/j.1432-1033.1981.tb05674.x. [DOI] [PubMed] [Google Scholar]
  22. Spano A. J., He Z., Michel H., Hunt D. F., Timko M. P. Molecular cloning, nuclear gene structure, and developmental expression of NADPH: protochlorophyllide oxidoreductase in pea (Pisum sativum L.). Plant Mol Biol. 1992 Mar;18(5):967–972. doi: 10.1007/BF00019210. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES