Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

The Plant Cell logoLink to The Plant Cell
. 1995 Dec;7(12):2091–2100. doi: 10.1105/tpc.7.12.2091

ATP-Dependent Regulation of an Anion Channel at the Plasma Membrane of Protoplasts from Epidermal Cells of Arabidopsis Hypocotyls.

S Thomine 1, S Zimmermann 1, J Guern 1, H Barbier-Brygoo 1
PMCID: PMC161064  PMID: 12242370

Abstract

Although Arabidopsis is the object of many genetic and molecular biology investigations, relatively few studies deal with regulation of its transmembrane ion exchanges. To clarify the role of ion transport in plant development, organ-and tissue-specific ion channels must be studied. We identified a voltage-dependent anion channel in epidermal cells of Arabidopsis hypocotyls, thus providing a new example of the occurrence of voltage-dependent anion channels in a specific plant cell type distinct from the stomatal guard cell. The Arabidopsis hypocotyl anion channel is able to function under two modes characterized by different voltage dependences and different kinetic behaviors. This switch between a fast and a slow mode is controlled by ATP. In the presence of intracellular ATP (fast mode), the channels are closed at resting potentials, and whole-cell currents activate upon depolarization. After activation, the anion current deactivates rapidly and more and more completely at potentials negative to the peak. In the absence of ATP, the current switches from this fast mode to a mode characterized by a slow and incomplete deactivation at resting potentials. In addition, the whole-cell currents can be correlated with the activity of single channels. In the outside-out configuration, the presence of ATP modulates the mean lifetimes of the open and closed states of the channel at hyperpolarized potentials, thus controlling its open probability. The fact that ATP-dependent voltage regulation was observed in both whole-cell and outside-out configurations suggests that a single type of anion channel can switch between two modes with distinct functional properties.

Full Text

The Full Text of this article is available as a PDF (832.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Deng X. W. Fresh view of light signal transduction in plants. Cell. 1994 Feb 11;76(3):423–426. doi: 10.1016/0092-8674(94)90107-4. [DOI] [PubMed] [Google Scholar]
  2. Elzenga J. T., Keller C. P., Van Volkenburgh E. Patch clamping protoplasts from vascular plants : method for the quick isolation of protoplasts having a high success rate of gigaseal formation. Plant Physiol. 1991 Dec;97(4):1573–1575. doi: 10.1104/pp.97.4.1573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Giraudat J., Parcy F., Bertauche N., Gosti F., Leung J., Morris P. C., Bouvier-Durand M., Vartanian N. Current advances in abscisic acid action and signalling. Plant Mol Biol. 1994 Dec;26(5):1557–1577. doi: 10.1007/BF00016490. [DOI] [PubMed] [Google Scholar]
  4. Gout E., Bligny R., Douce R. Regulation of intracellular pH values in higher plant cells. Carbon-13 and phosphorus-31 nuclear magnetic resonance studies. J Biol Chem. 1992 Jul 15;267(20):13903–13909. [PubMed] [Google Scholar]
  5. Hedrich R., Busch H., Raschke K. Ca2+ and nucleotide dependent regulation of voltage dependent anion channels in the plasma membrane of guard cells. EMBO J. 1990 Dec;9(12):3889–3892. doi: 10.1002/j.1460-2075.1990.tb07608.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hedrich R., Marten I. Malate-induced feedback regulation of plasma membrane anion channels could provide a CO2 sensor to guard cells. EMBO J. 1993 Mar;12(3):897–901. doi: 10.1002/j.1460-2075.1993.tb05730.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hobbie L., Timpte C., Estelle M. Molecular genetics of auxin and cytokinin. Plant Mol Biol. 1994 Dec;26(5):1499–1519. doi: 10.1007/BF00016487. [DOI] [PubMed] [Google Scholar]
  8. Lew R. R. Substrate regulation of single potassium and chloride ion channels in Arabidopsis plasma membrane. Plant Physiol. 1991 Feb;95(2):642–647. doi: 10.1104/pp.95.2.642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Meyerowitz E. M. Arabidopsis, a useful weed. Cell. 1989 Jan 27;56(2):263–269. doi: 10.1016/0092-8674(89)90900-8. [DOI] [PubMed] [Google Scholar]
  10. Neher E. Correction for liquid junction potentials in patch clamp experiments. Methods Enzymol. 1992;207:123–131. doi: 10.1016/0076-6879(92)07008-c. [DOI] [PubMed] [Google Scholar]
  11. Saint-Ges V., Roby C., Bligny R., Pradet A., Douce R. Kinetic studies of the variations of cytoplasmic pH, nucleotide triphosphates (31P-NMR) and lactate during normoxic and anoxic transitions in maize root tips. Eur J Biochem. 1991 Sep 1;200(2):477–482. doi: 10.1111/j.1432-1033.1991.tb16207.x. [DOI] [PubMed] [Google Scholar]
  12. Schauf C. L., Wilson K. J. Properties of Single K and Cl Channels in Asclepias tuberosa Protoplasts. Plant Physiol. 1987 Oct;85(2):413–418. doi: 10.1104/pp.85.2.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Schroeder J. I., Hedrich R. Involvement of ion channels and active transport in osmoregulation and signaling of higher plant cells. Trends Biochem Sci. 1989 May;14(5):187–192. doi: 10.1016/0968-0004(89)90272-7. [DOI] [PubMed] [Google Scholar]
  14. Schroeder J. I., Keller B. U. Two types of anion channel currents in guard cells with distinct voltage regulation. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):5025–5029. doi: 10.1073/pnas.89.11.5025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Schroeder J. I., Schmidt C., Sheaffer J. Identification of High-Affinity Slow Anion Channel Blockers and Evidence for Stomatal Regulation by Slow Anion Channels in Guard Cells. Plant Cell. 1993 Dec;5(12):1831–1841. doi: 10.1105/tpc.5.12.1831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Spalding E. P., Goldsmith MHM. Activation of K+ Channels in the Plasma Membrane of Arabidopsis by ATP Produced Photosynthetically. Plant Cell. 1993 Apr;5(4):477–484. doi: 10.1105/tpc.5.4.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Spalding E. P., Slayman C. L., Goldsmith M. H., Gradmann D., Bertl A. Ion channels in Arabidopsis plasma membrane : transport characteristics and involvement in light-induced voltage changes. Plant Physiol. 1992 May;99(1):96–102. doi: 10.1104/pp.99.1.96. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Welsh M. J., Anderson M. P., Rich D. P., Berger H. A., Denning G. M., Ostedgaard L. S., Sheppard D. N., Cheng S. H., Gregory R. J., Smith A. E. Cystic fibrosis transmembrane conductance regulator: a chloride channel with novel regulation. Neuron. 1992 May;8(5):821–829. doi: 10.1016/0896-6273(92)90196-k. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES