Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1995 Dec;7(12):2175–2185. doi: 10.1105/tpc.7.12.2175

Plant inositol monophosphatase is a lithium-sensitive enzyme encoded by a multigene family.

G E Gillaspy 1, J S Keddie 1, K Oda 1, W Gruissem 1
PMCID: PMC161071  PMID: 8718627

Abstract

myo-Inositol monophosphatase (IMP) is a soluble, Li(+)-sensitive protein that catalyzes the removal of a phosphate from myo-inositol phosphate substrates. IMP is required for de novo inositol synthesis from glucose 6-phosphate and for breakdown of inositol trisphosphate, a second messenger generated by the phosphatidylinositol signaling pathway. We cloned the IMP gene from tomato (LeIMP) and show that the plant enzyme is encoded by a small gene family. Three different LeIMP cDNAs encode distinct but highly conserved IMP enzymes that are catalytically active in vitro. Similar to the single IMP from animals, the activities of all three LeIMPs are inhibited by low concentrations of LiCl. LeIMP mRNA levels are developmentally regulated in seedlings and fruit and in response to light. Immunoblot analysis detected three proteins of distinct molecular masses (30, 29, and 28 kD) in tomato; these correspond to the predicted molecular masses of the LeIMPs encoded by the genes. Immunoreactive proteins in the same size range are also present in several other plants. Immunolocalization studies indicated that many cell types within seedlings accumulate LeIMP proteins. In particular, cells associated with the vasculature express high levels of LeIMP protein; this may indicate a coordinate regulation between phloem transport and synthesis of inositol. The presence of three distinct enzymes in tomato most likely reflects the complexity of inositol utilization in higher plants.

Full Text

The Full Text of this article is available as a PDF (2.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berridge M. J., Downes C. P., Hanley M. R. Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochem J. 1982 Sep 15;206(3):587–595. doi: 10.1042/bj2060587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berridge M. J. Inositol trisphosphate and diacylglycerol: two interacting second messengers. Annu Rev Biochem. 1987;56:159–193. doi: 10.1146/annurev.bi.56.070187.001111. [DOI] [PubMed] [Google Scholar]
  3. Biffen M., Hanke D. E. Reduction in the level of intracellular myo-inositol in cultured soybean (Glycine max) cells inhibits cell division. Biochem J. 1990 Feb 1;265(3):809–814. doi: 10.1042/bj2650809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bohnert H. J., Nelson D. E., Jensen R. G. Adaptations to Environmental Stresses. Plant Cell. 1995 Jul;7(7):1099–1111. doi: 10.1105/tpc.7.7.1099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bone R., Springer J. P., Atack J. R. Structure of inositol monophosphatase, the putative target of lithium therapy. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10031–10035. doi: 10.1073/pnas.89.21.10031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Busa W. B., Gimlich R. L. Lithium-induced teratogenesis in frog embryos prevented by a polyphosphoinositide cycle intermediate or a diacylglycerol analog. Dev Biol. 1989 Apr;132(2):315–324. doi: 10.1016/0012-1606(89)90228-5. [DOI] [PubMed] [Google Scholar]
  7. Cockroft D. L., Brook F. A., Copp A. J. Inositol deficiency increases the susceptibility to neural tube defects of genetically predisposed (curly tail) mouse embryos in vitro. Teratology. 1992 Feb;45(2):223–232. doi: 10.1002/tera.1420450216. [DOI] [PubMed] [Google Scholar]
  8. Eisenberg F., Jr D-myoinositol 1-phosphate as product of cyclization of glucose 6-phosphate and substrate for a specific phosphatase in rat testis. J Biol Chem. 1967 Apr 10;242(7):1375–1382. [PubMed] [Google Scholar]
  9. Fabiny J. M., Jayakumar A., Chinault A. C., Barnes E. M., Jr Ammonium transport in Escherichia coli: localization and nucleotide sequence of the amtA gene. J Gen Microbiol. 1991 Apr;137(4):983–989. doi: 10.1099/00221287-137-4-983. [DOI] [PubMed] [Google Scholar]
  10. Geever R. F., Huiet L., Baum J. A., Tyler B. M., Patel V. B., Rutledge B. J., Case M. E., Giles N. H. DNA sequence, organization and regulation of the qa gene cluster of Neurospora crassa. J Mol Biol. 1989 May 5;207(1):15–34. doi: 10.1016/0022-2836(89)90438-5. [DOI] [PubMed] [Google Scholar]
  11. Gillaspy G., Ben-David H., Gruissem W. Fruits: A Developmental Perspective. Plant Cell. 1993 Oct;5(10):1439–1451. doi: 10.1105/tpc.5.10.1439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gläser H. U., Thomas D., Gaxiola R., Montrichard F., Surdin-Kerjan Y., Serrano R. Salt tolerance and methionine biosynthesis in Saccharomyces cerevisiae involve a putative phosphatase gene. EMBO J. 1993 Aug;12(8):3105–3110. doi: 10.1002/j.1460-2075.1993.tb05979.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gumber S. C., Loewus M. W., Loewus F. A. Further Studies on myo-Inositol-1-phosphatase from the Pollen of Lilium longiflorum Thunb. Plant Physiol. 1984 Sep;76(1):40–44. doi: 10.1104/pp.76.1.40. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hallcher L. M., Sherman W. R. The effects of lithium ion and other agents on the activity of myo-inositol-1-phosphatase from bovine brain. J Biol Chem. 1980 Nov 25;255(22):10896–10901. [PubMed] [Google Scholar]
  15. Hawkins A. R., Lamb H. K., Smith M., Keyte J. W., Roberts C. F. Molecular organisation of the quinic acid utilization (QUT) gene cluster in Aspergillus nidulans. Mol Gen Genet. 1988 Oct;214(2):224–231. doi: 10.1007/BF00337715. [DOI] [PubMed] [Google Scholar]
  16. Hirayama T., Ohto C., Mizoguchi T., Shinozaki K. A gene encoding a phosphatidylinositol-specific phospholipase C is induced by dehydration and salt stress in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3903–3907. doi: 10.1073/pnas.92.9.3903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Inhorn R. C., Majerus P. W. Inositol polyphosphate 1-phosphatase from calf brain. Purification and inhibition by Li+, Ca2+, and Mn2+. J Biol Chem. 1987 Nov 25;262(33):15946–15952. [PubMed] [Google Scholar]
  18. Johnson M. D., Sussex I. M. 1 L-myo-Inositol 1-Phosphate Synthase from Arabidopsis thaliana. Plant Physiol. 1995 Feb;107(2):613–619. doi: 10.1104/pp.107.2.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Johnson M. D. The arabidopsis thaliana myo-inositol 1-phosphate synthase (EC 5.5.1.4). Plant Physiol. 1994 Jul;105(3):1023–1024. doi: 10.1104/pp.105.3.1023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Joseph S. K., Esch T., Bonner W. D., Jr Hydrolysis of inositol phosphates by plant cell extracts. Biochem J. 1989 Dec 15;264(3):851–856. doi: 10.1042/bj2640851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Maslanski J. A., Leshko L., Busa W. B. Lithium-sensitive production of inositol phosphates during amphibian embryonic mesoderm induction. Science. 1992 Apr 10;256(5054):243–245. doi: 10.1126/science.1314424. [DOI] [PubMed] [Google Scholar]
  22. Matsuhisa A., Suzuki N., Noda T., Shiba K. Inositol monophosphatase activity from the Escherichia coli suhB gene product. J Bacteriol. 1995 Jan;177(1):200–205. doi: 10.1128/jb.177.1.200-205.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Murguía J. R., Bellés J. M., Serrano R. A salt-sensitive 3'(2'),5'-bisphosphate nucleotidase involved in sulfate activation. Science. 1995 Jan 13;267(5195):232–234. doi: 10.1126/science.7809627. [DOI] [PubMed] [Google Scholar]
  24. Narita J. O., Gruissem W. Tomato hydroxymethylglutaryl-CoA reductase is required early in fruit development but not during ripening. Plant Cell. 1989 Feb;1(2):181–190. doi: 10.1105/tpc.1.2.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Neuwald A. F., York J. D., Majerus P. W. Diverse proteins homologous to inositol monophosphatase. FEBS Lett. 1991 Dec 2;294(1-2):16–18. doi: 10.1016/0014-5793(91)81332-3. [DOI] [PubMed] [Google Scholar]
  26. Nieuwkoop P. D. The organization center of the amphibian embryo: its origin, spatial organization, and morphogenetic action. Adv Morphog. 1973;10:1–39. doi: 10.1016/b978-0-12-028610-2.50005-8. [DOI] [PubMed] [Google Scholar]
  27. Parthasarathy L., Vadnal R. E., Parthasarathy R., Devi C. S. Biochemical and molecular properties of lithium-sensitive myo-inositol monophosphatase. Life Sci. 1994;54(16):1127–1142. doi: 10.1016/0024-3205(94)00835-3. [DOI] [PubMed] [Google Scholar]
  28. Peters D. J., Van Lookeren Campagne M. M., Van Haastert P. J., Spek W., Schaap P. Lithium ions induce prestalk-associated gene expression and inhibit prespore gene expression in Dictyostelium discoideum. J Cell Sci. 1989 May;93(Pt 1):205–210. doi: 10.1242/jcs.93.1.205. [DOI] [PubMed] [Google Scholar]
  29. Ragan C. I., Watling K. J., Gee N. S., Aspley S., Jackson R. G., Reid G. G., Baker R., Billington D. C., Barnaby R. J., Leeson P. D. The dephosphorylation of inositol 1,4-bisphosphate to inositol in liver and brain involves two distinct Li+-sensitive enzymes and proceeds via inositol 4-phosphate. Biochem J. 1988 Jan 1;249(1):143–148. doi: 10.1042/bj2490143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sasaki K., Taylor I. E. myo-Inositol Synthesis from [1-H]Glucose in Phaseolus vulgaris L. during Early Stages of Germination. Plant Physiol. 1986 Jun;81(2):493–496. doi: 10.1104/pp.81.2.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Schuster G., Gruissem W. Chloroplast mRNA 3' end processing requires a nuclear-encoded RNA-binding protein. EMBO J. 1991 Jun;10(6):1493–1502. doi: 10.1002/j.1460-2075.1991.tb07669.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Trewavas A., Gilroy S. Signal transduction in plant cells. Trends Genet. 1991 Nov-Dec;7(11-12):356–361. doi: 10.1016/0168-9525(91)90255-o. [DOI] [PubMed] [Google Scholar]
  33. Vernon D. M., Bohnert H. J. A novel methyl transferase induced by osmotic stress in the facultative halophyte Mesembryanthemum crystallinum. EMBO J. 1992 Jun;11(6):2077–2085. doi: 10.1002/j.1460-2075.1992.tb05266.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wreggett K. A. Inositol monophosphatase is a highly conserved enzyme having localized structural similarity to both glycerol 3-phosphate dehydrogenase and haemoglobin. Biochem J. 1992 Aug 15;286(Pt 1):147–152. doi: 10.1042/bj2860147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Yamamoto Y. T., Conkling M. A., Sussex I. M., Irish V. F. An Arabidopsis cDNA related to animal phosphoinositide-specific phospholipase C genes. Plant Physiol. 1995 Mar;107(3):1029–1030. doi: 10.1104/pp.107.3.1029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. York J. D., Majerus P. W. Isolation and heterologous expression of a cDNA encoding bovine inositol polyphosphate 1-phosphatase. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9548–9552. doi: 10.1073/pnas.87.24.9548. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES