Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1995 Dec;7(12):2197–2210. doi: 10.1105/tpc.7.12.2197

G Protein Activation Stimulates Phospholipase D Signaling in Plants.

T Munnik 1, S A Arisz 1, T De Vrije 1, A Musgrave 1
PMCID: PMC161073  PMID: 12242371

Abstract

We provide direct evidence for phospholipase D (PLD) signaling in plants by showing that this enzyme is stimulated by the G protein activators mastoparan, ethanol, and cholera toxin. An in vivo assay for PLD activity in plant cells was developed based on the use of a "reporter alcohol" rather than water as a transphosphatidylation substrate. The product was a phosphatidyl alcohol, which, in contrast to the normal product phosphatidic acid, is a specific measure of PLD activity. When 32P-labeled cells were treated with 0.1% n-butanol, 32P-phosphatidyl butanol (32P-PtdBut) was formed in a time-dependent manner. In cells treated with any of the three G protein activators, the production of 32P-PtdBut was increased in a dose-dependent manner. The G protein involved was pertussis toxin insensitive. Ethanol could activate PLD but was itself consumed by PLD as transphosphatidylation substrate. In contrast, secondary alcohols (e.g., sec-butyl alcohol) activated PLD but did not function as substrate, whereas tertiary alcohols did neither. Although most of the experiments were performed with the green alga Chlamydomonas eugametos, the relevance for higher plants was demonstrated by showing that PLD in carnation petals could also be activated by mastoparan. The results indicate that PLD activation must be considered as a potential signal transduction mechanism in plants, just as in animals.

Full Text

The Full Text of this article is available as a PDF (3.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
  2. Billah M. M., Anthes J. C. The regulation and cellular functions of phosphatidylcholine hydrolysis. Biochem J. 1990 Jul 15;269(2):281–291. doi: 10.1042/bj2690281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Billah M. M. Phospholipase D and cell signaling. Curr Opin Immunol. 1993 Feb;5(1):114–123. doi: 10.1016/0952-7915(93)90090-f. [DOI] [PubMed] [Google Scholar]
  4. Birnbaumer L. Receptor-to-effector signaling through G proteins: roles for beta gamma dimers as well as alpha subunits. Cell. 1992 Dec 24;71(7):1069–1072. doi: 10.1016/s0092-8674(05)80056-x. [DOI] [PubMed] [Google Scholar]
  5. Boarder M. R. A role for phospholipase D in control of mitogenesis. Trends Pharmacol Sci. 1994 Feb;15(2):57–62. doi: 10.1016/0165-6147(94)90111-2. [DOI] [PubMed] [Google Scholar]
  6. Bocckino S. B., Wilson P. B., Exton J. H. Ca2+-mobilizing hormones elicit phosphatidylethanol accumulation via phospholipase D activation. FEBS Lett. 1987 Dec 10;225(1-2):201–204. doi: 10.1016/0014-5793(87)81157-2. [DOI] [PubMed] [Google Scholar]
  7. Bocckino S. B., Wilson P. B., Exton J. H. Phosphatidate-dependent protein phosphorylation. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6210–6213. doi: 10.1073/pnas.88.14.6210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Boman A. L., Kahn R. A. Arf proteins: the membrane traffic police? Trends Biochem Sci. 1995 Apr;20(4):147–150. doi: 10.1016/s0968-0004(00)88991-4. [DOI] [PubMed] [Google Scholar]
  9. Bourgoin S., Grinstein S. Peroxides of vanadate induce activation of phospholipase D in HL-60 cells. Role of tyrosine phosphorylation. J Biol Chem. 1992 Jun 15;267(17):11908–11916. [PubMed] [Google Scholar]
  10. Brown H. A., Gutowski S., Moomaw C. R., Slaughter C., Sternweis P. C. ADP-ribosylation factor, a small GTP-dependent regulatory protein, stimulates phospholipase D activity. Cell. 1993 Dec 17;75(6):1137–1144. doi: 10.1016/0092-8674(93)90323-i. [DOI] [PubMed] [Google Scholar]
  11. Cho M. H., Tan Z., Erneux C., Shears S. B., Boss W. F. The effects of mastoparan on the carrot cell plasma membrane polyphosphoinositide phospholipase C. Plant Physiol. 1995 Mar;107(3):845–856. doi: 10.1104/pp.107.3.845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cockcroft S., Thomas G. M., Fensome A., Geny B., Cunningham E., Gout I., Hiles I., Totty N. F., Truong O., Hsuan J. J. Phospholipase D: a downstream effector of ARF in granulocytes. Science. 1994 Jan 28;263(5146):523–526. doi: 10.1126/science.8290961. [DOI] [PubMed] [Google Scholar]
  13. Dawson R. M. The formation of phosphatidylglycerol and other phospholipids by the transferase activity of phospholipase D. Biochem J. 1967 Jan;102(1):205–210. doi: 10.1042/bj1020205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Elich T. D., Chory J. Initial events in phytochrome signalling: still in the dark. Plant Mol Biol. 1994 Dec;26(5):1315–1327. doi: 10.1007/BF00016477. [DOI] [PubMed] [Google Scholar]
  15. Epand R. M., Stafford A. R., Lester D. S. Lipid vesicles which can bind to protein kinase C and activate the enzyme in the presence of EGTA. Eur J Biochem. 1992 Sep 1;208(2):327–332. doi: 10.1111/j.1432-1033.1992.tb17190.x. [DOI] [PubMed] [Google Scholar]
  16. Exton J. H. Messenger molecules derived from membrane lipids. Curr Opin Cell Biol. 1994 Apr;6(2):226–229. doi: 10.1016/0955-0674(94)90140-6. [DOI] [PubMed] [Google Scholar]
  17. Exton J. H. Signaling through phosphatidylcholine breakdown. J Biol Chem. 1990 Jan 5;265(1):1–4. [PubMed] [Google Scholar]
  18. Gilman A. G. G proteins: transducers of receptor-generated signals. Annu Rev Biochem. 1987;56:615–649. doi: 10.1146/annurev.bi.56.070187.003151. [DOI] [PubMed] [Google Scholar]
  19. Gustavsson L., Moehren G., Torres-Marquez M. E., Benistant C., Rubin R., Hoek J. B. The role of cytosolic Ca2+, protein kinase C, and protein kinase A in hormonal stimulation of phospholipase D in rat hepatocytes. J Biol Chem. 1994 Jan 14;269(2):849–859. [PubMed] [Google Scholar]
  20. Ha K. S., Exton J. H. Activation of actin polymerization by phosphatidic acid derived from phosphatidylcholine in IIC9 fibroblasts. J Cell Biol. 1993 Dec;123(6 Pt 2):1789–1796. doi: 10.1083/jcb.123.6.1789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ha K. S., Yeo E. J., Exton J. H. Lysophosphatidic acid activation of phosphatidylcholine-hydrolysing phospholipase D and actin polymerization by a pertussis toxin-sensitive mechanism. Biochem J. 1994 Oct 1;303(Pt 1):55–59. doi: 10.1042/bj3030055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hashizume T., Sato T., Fujii T. Phosphatidic acid with medium-length fatty acyl chains synergistically stimulates phospholipase C with Ca2+ in rabbit platelets. Biochem Int. 1992 Mar;26(3):491–497. [PubMed] [Google Scholar]
  23. Heller M. Phospholipase D. Adv Lipid Res. 1978;16:267–326. doi: 10.1016/b978-0-12-024916-9.50011-1. [DOI] [PubMed] [Google Scholar]
  24. Hepler J. R., Gilman A. G. G proteins. Trends Biochem Sci. 1992 Oct;17(10):383–387. doi: 10.1016/0968-0004(92)90005-t. [DOI] [PubMed] [Google Scholar]
  25. Inglese J., Koch W. J., Touhara K., Lefkowitz R. J. G beta gamma interactions with PH domains and Ras-MAPK signaling pathways. Trends Biochem Sci. 1995 Apr;20(4):151–156. doi: 10.1016/s0968-0004(00)88992-6. [DOI] [PubMed] [Google Scholar]
  26. Irvine R. F., Letcher A. J., Stephens L. R., Musgrave A. Inositol polyphosphate metabolism and inositol lipids in a green alga, Chlamydomonas eugametos. Biochem J. 1992 Jan 1;281(Pt 1):261–266. doi: 10.1042/bj2810261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Jackowski S., Rock C. O. Stimulation of phosphatidylinositol 4,5-bisphosphate phospholipase C activity by phosphatidic acid. Arch Biochem Biophys. 1989 Feb 1;268(2):516–524. doi: 10.1016/0003-9861(89)90318-4. [DOI] [PubMed] [Google Scholar]
  28. Jiang H., Alexandropoulos K., Song J., Foster D. A. Evidence that v-Src-induced phospholipase D activity is mediated by a G protein. Mol Cell Biol. 1994 Jun;14(6):3676–3682. doi: 10.1128/mcb.14.6.3676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Jones G. A., Carpenter G. The regulation of phospholipase C-gamma 1 by phosphatidic acid. Assessment of kinetic parameters. J Biol Chem. 1993 Oct 5;268(28):20845–20850. [PubMed] [Google Scholar]
  30. Kanfer J. N. The base exchange enzymes and phospholipase D of mammalian tissue. Can J Biochem. 1980 Dec;58(12):1370–1380. doi: 10.1139/o80-186. [DOI] [PubMed] [Google Scholar]
  31. Khan W. A., Blobe G. C., Richards A. L., Hannun Y. A. Identification, partial purification, and characterization of a novel phospholipid-dependent and fatty acid-activated protein kinase from human platelets. J Biol Chem. 1994 Apr 1;269(13):9729–9735. [PubMed] [Google Scholar]
  32. Kiss Z., Anderson W. B. Alcohols selectively stimulate phospholipase D-mediated hydrolysis of phosphatidylethanolamine in NIH 3T3 cells. FEBS Lett. 1989 Oct 23;257(1):45–48. doi: 10.1016/0014-5793(89)81782-x. [DOI] [PubMed] [Google Scholar]
  33. Kobayashi M., Kanfer J. N. Phosphatidylethanol formation via transphosphatidylation by rat brain synaptosomal phospholipase D. J Neurochem. 1987 May;48(5):1597–1603. doi: 10.1111/j.1471-4159.1987.tb05707.x. [DOI] [PubMed] [Google Scholar]
  34. Kroll M. H., Zavoico G. B., Schafer A. I. Second messenger function of phosphatidic acid in platelet activation. J Cell Physiol. 1989 Jun;139(3):558–564. doi: 10.1002/jcp.1041390315. [DOI] [PubMed] [Google Scholar]
  35. Law G. J., Northrop A. J. Synthetic peptides to mimic the role of GTP binding proteins in membrane traffic and fusion. Ann N Y Acad Sci. 1994 Mar 9;710:196–208. doi: 10.1111/j.1749-6632.1994.tb26628.x. [DOI] [PubMed] [Google Scholar]
  36. Legendre L., Heinstein P. F., Low P. S. Evidence for participation of GTP-binding proteins in elicitation of the rapid oxidative burst in cultured soybean cells. J Biol Chem. 1992 Oct 5;267(28):20140–20147. [PubMed] [Google Scholar]
  37. Limatola C., Schaap D., Moolenaar W. H., van Blitterswijk W. J. Phosphatidic acid activation of protein kinase C-zeta overexpressed in COS cells: comparison with other protein kinase C isotypes and other acidic lipids. Biochem J. 1994 Dec 15;304(Pt 3):1001–1008. doi: 10.1042/bj3041001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Liscovitch M., Amsterdam A. Gonadotropin-releasing hormone activates phospholipase D in ovarian granulosa cells. Possible role in signal transduction. J Biol Chem. 1989 Jul 15;264(20):11762–11767. [PubMed] [Google Scholar]
  39. Liscovitch M., Cantley L. C. Lipid second messengers. Cell. 1994 May 6;77(3):329–334. doi: 10.1016/0092-8674(94)90148-1. [DOI] [PubMed] [Google Scholar]
  40. Liscovitch M. Crosstalk among multiple signal-activated phospholipases. Trends Biochem Sci. 1992 Oct;17(10):393–399. doi: 10.1016/0968-0004(92)90007-v. [DOI] [PubMed] [Google Scholar]
  41. Liscovitch M. Phosphatidylethanol biosynthesis in ethanol-exposed NG108-15 neuroblastoma X glioma hybrid cells. Evidence for activation of a phospholipase D phosphatidyl transferase activity by protein kinase C. J Biol Chem. 1989 Jan 25;264(3):1450–1456. [PubMed] [Google Scholar]
  42. Moehren G., Gustavsson L., Hoek J. B. Activation and desensitization of phospholipase D in intact rat hepatocytes. J Biol Chem. 1994 Jan 14;269(2):838–848. [PubMed] [Google Scholar]
  43. Moss J., Haun R. S., Tsai S. C., Welsh C. F., Lee F. J., Price S. R., Vaughan M. Activation of cholera toxin by ADP-ribosylation factors: 20-kDa guanine nucleotide-binding proteins. Methods Enzymol. 1994;237:44–63. doi: 10.1016/s0076-6879(94)37052-4. [DOI] [PubMed] [Google Scholar]
  44. Moss J., Stanley S. J., Burns D. L., Hsia J. A., Yost D. A., Myers G. A., Hewlett E. L. Activation by thiol of the latent NAD glycohydrolase and ADP-ribosyltransferase activities of Bordetella pertussis toxin (islet-activating protein). J Biol Chem. 1983 Oct 10;258(19):11879–11882. [PubMed] [Google Scholar]
  45. Munnik T., Irvine R. F., Musgrave A. Rapid turnover of phosphatidylinositol 3-phosphate in the green alga Chlamydomonas eugametos: signs of a phosphatidylinositide 3-kinase signalling pathway in lower plants? Biochem J. 1994 Mar 1;298(Pt 2):269–273. doi: 10.1042/bj2980269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Neer E. J. Heterotrimeric G proteins: organizers of transmembrane signals. Cell. 1995 Jan 27;80(2):249–257. doi: 10.1016/0092-8674(95)90407-7. [DOI] [PubMed] [Google Scholar]
  47. Neuhaus G., Bowler C., Kern R., Chua N. H. Calcium/calmodulin-dependent and -independent phytochrome signal transduction pathways. Cell. 1993 Jun 4;73(5):937–952. doi: 10.1016/0092-8674(93)90272-r. [DOI] [PubMed] [Google Scholar]
  48. Nishizuka Y. Protein kinase C and lipid signaling for sustained cellular responses. FASEB J. 1995 Apr;9(7):484–496. [PubMed] [Google Scholar]
  49. Qualliotine-Mann D., Agwu D. E., Ellenburg M. D., McCall C. E., McPhail L. C. Phosphatidic acid and diacylglycerol synergize in a cell-free system for activation of NADPH oxidase from human neutrophils. J Biol Chem. 1993 Nov 15;268(32):23843–23849. [PubMed] [Google Scholar]
  50. Quarmby L. M., Hartzell H. C. Two distinct, calcium-mediated, signal transduction pathways can trigger deflagellation in Chlamydomonas reinhardtii. J Cell Biol. 1994 Mar;124(5):807–815. doi: 10.1083/jcb.124.5.807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Quarmby L. M. Signal transduction in the sexual life of Chlamydomonas. Plant Mol Biol. 1994 Dec;26(5):1271–1287. doi: 10.1007/BF00016474. [DOI] [PubMed] [Google Scholar]
  52. Roberts M. F. First thoughts on lipid second messengers. Trends Cell Biol. 1994 Jun;4(6):219–223. doi: 10.1016/0962-8924(94)90145-7. [DOI] [PubMed] [Google Scholar]
  53. Romero L. C., Lam E. Guanine nucleotide binding protein involvement in early steps of phytochrome-regulated gene expression. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1465–1469. doi: 10.1073/pnas.90.4.1465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Romero L. C., Sommer D., Gotor C., Song P. S. G-proteins in etiolated Avena seedlings. Possible phytochrome regulation. FEBS Lett. 1991 May 6;282(2):341–346. doi: 10.1016/0014-5793(91)80509-2. [DOI] [PubMed] [Google Scholar]
  55. Sanders M. A., Salisbury J. L. Centrin plays an essential role in microtubule severing during flagellar excision in Chlamydomonas reinhardtii. J Cell Biol. 1994 Mar;124(5):795–805. doi: 10.1083/jcb.124.5.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Schuring F., Brederoo J., Musgrave A., van den Ende H. Increase in calcium triggers mating structure activation in Chlamydomonas eugametos. FEMS Microbiol Lett. 1990 Sep 15;59(3):237–240. doi: 10.1016/0378-1097(90)90226-g. [DOI] [PubMed] [Google Scholar]
  57. Stasek J. E., Jr, Natarajan V., Garcia J. G. Phosphatidic acid directly activates endothelial cell protein kinase C. Biochem Biophys Res Commun. 1993 Feb 26;191(1):134–141. doi: 10.1006/bbrc.1993.1194. [DOI] [PubMed] [Google Scholar]
  58. Uings I. J., Thompson N. T., Randall R. W., Spacey G. D., Bonser R. W., Hudson A. T., Garland L. G. Tyrosine phosphorylation is involved in receptor coupling to phospholipase D but not phospholipase C in the human neutrophil. Biochem J. 1992 Feb 1;281(Pt 3):597–600. doi: 10.1042/bj2810597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Wang X., Xu L., Zheng L. Cloning and expression of phosphatidylcholine-hydrolyzing phospholipase D from Ricinus communis L. J Biol Chem. 1994 Aug 12;269(32):20312–20317. [PubMed] [Google Scholar]
  60. Warpeha K. M., Hamm H. E., Rasenick M. M., Kaufman L. S. A blue-light-activated GTP-binding protein in the plasma membranes of etiolated peas. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):8925–8929. doi: 10.1073/pnas.88.20.8925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Xie M. S., Dubyak G. R. Guanine-nucleotide- and adenine-nucleotide-dependent regulation of phospholipase D in electropermeabilized HL-60 granulocytes. Biochem J. 1991 Aug 15;278(Pt 1):81–89. doi: 10.1042/bj2780081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Yang S. F., Freer S., Benson A. A. Transphosphatidylation by phospholipase D. J Biol Chem. 1967 Feb 10;242(3):477–484. [PubMed] [Google Scholar]
  63. Yueh Y. G., Crain R. C. Deflagellation of Chlamydomonas reinhardtii follows a rapid transitory accumulation of inositol 1,4,5-trisphosphate and requires Ca2+ entry. J Cell Biol. 1993 Nov;123(4):869–875. doi: 10.1083/jcb.123.4.869. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES