Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1996 Feb;8(2):169–178. doi: 10.1105/tpc.8.2.169

Identification of an elicitor active site within the three-dimensional structure of the tobacco mosaic tobamovirus coat protein.

Z F Taraporewala 1, J N Culver 1
PMCID: PMC161089  PMID: 8742708

Abstract

The coat protein (CP) of tobacco mosaic tobamovirus (TMV) elicits the hypersensitive response (HR) conferred by the N' gene from Nicotiana sylvestris. This study presents evidence demonstrating a critical role for a specific CP structural site in eliciting this HR. Based on the known structure of the TMV CP, specific substitutions were created within the CP of the elicitor strain P20L to identify structural areas essential for host recognition. Of 32 substitutions made, 14 conferred either a temperature-sensitive (loss of the HR at 29 degrees C) or a knockout (loss of the HR at 25 degrees C) HR phenotype in N.sylvestris. These essential residues were noncontiguous in position; however, within the three-dimensional CP structure, all resided primarily along the right face of the molecule's helical bundle. Substitutions that did not affect the HR phenotype either were located outside of this area or were conservative in change. In addition, placing two temperature-sensitive substitutions within the same CP resulted in lowering temperature sensitivity from 29 to 27 degrees C. This additive effect suggests that residues essential for HR elicitation contribute independently to host recognition. This feature is characteristic of recognition surfaces. The presence of a specific elicitor active site within the three-dimensional structure of the TMV CP is consistent with binding of a host-encoded receptor and demonstrates the importance of CP structure in HR specificity.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bent A. F., Kunkel B. N., Dahlbeck D., Brown K. L., Schmidt R., Giraudat J., Leung J., Staskawicz B. J. RPS2 of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance genes. Science. 1994 Sep 23;265(5180):1856–1860. doi: 10.1126/science.8091210. [DOI] [PubMed] [Google Scholar]
  2. Culver J. N., Stubbs G., Dawson W. O. Structure-function relationship between tobacco mosaic virus coat protein and hypersensitivity in Nicotiana sylvestris. J Mol Biol. 1994 Sep 16;242(2):130–138. doi: 10.1006/jmbi.1994.1564. [DOI] [PubMed] [Google Scholar]
  3. Ellis J. G., Lawrence G. J., Finnegan E. J., Anderson P. A. Contrasting complexity of two rust resistance loci in flax. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4185–4188. doi: 10.1073/pnas.92.10.4185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Goelet P., Lomonossoff G. P., Butler P. J., Akam M. E., Gait M. J., Karn J. Nucleotide sequence of tobacco mosaic virus RNA. Proc Natl Acad Sci U S A. 1982 Oct;79(19):5818–5822. doi: 10.1073/pnas.79.19.5818. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Janin J., Chothia C. The structure of protein-protein recognition sites. J Biol Chem. 1990 Sep 25;265(27):16027–16030. [PubMed] [Google Scholar]
  6. Jardetzky O., Akasaka K., Vogel D., Morris S., Holmes K. C. Unusual segmental flexibility in a region of tobacco mosaic virus coat protein. Nature. 1978 Jun 15;273(5663):564–566. doi: 10.1038/273564a0. [DOI] [PubMed] [Google Scholar]
  7. Keen N. T. The molecular biology of disease resistance. Plant Mol Biol. 1992 May;19(1):109–122. doi: 10.1007/BF00015609. [DOI] [PubMed] [Google Scholar]
  8. Knecht D. A., Dimond R. L. Visualization of antigenic proteins on Western blots. Anal Biochem. 1984 Jan;136(1):180–184. doi: 10.1016/0003-2697(84)90321-x. [DOI] [PubMed] [Google Scholar]
  9. Knorr D. A., Dawson W. O. A point mutation in the tobacco mosaic virus capsid protein gene induces hypersensitivity in Nicotiana sylvestris. Proc Natl Acad Sci U S A. 1988 Jan;85(1):170–174. doi: 10.1073/pnas.85.1.170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kumagai M. H., Turpen T. H., Weinzettl N., della-Cioppa G., Turpen A. M., Donson J., Hilf M. E., Grantham G. L., Dawson W. O., Chow T. P. Rapid, high-level expression of biologically active alpha-trichosanthin in transfected plants by an RNA viral vector. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):427–430. doi: 10.1073/pnas.90.2.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  12. Lamb C. J., Lawton M. A., Dron M., Dixon R. A. Signals and transduction mechanisms for activation of plant defenses against microbial attack. Cell. 1989 Jan 27;56(2):215–224. doi: 10.1016/0092-8674(89)90894-5. [DOI] [PubMed] [Google Scholar]
  13. Lehto K., Bubrick P., Dawson W. O. Time course of TMV 30K protein accumulation in intact leaves. Virology. 1990 Jan;174(1):290–293. doi: 10.1016/0042-6822(90)90077-5. [DOI] [PubMed] [Google Scholar]
  14. Mindrinos M., Katagiri F., Yu G. L., Ausubel F. M. The A. thaliana disease resistance gene RPS2 encodes a protein containing a nucleotide-binding site and leucine-rich repeats. Cell. 1994 Sep 23;78(6):1089–1099. doi: 10.1016/0092-8674(94)90282-8. [DOI] [PubMed] [Google Scholar]
  15. Namba K., Pattanayek R., Stubbs G. Visualization of protein-nucleic acid interactions in a virus. Refined structure of intact tobacco mosaic virus at 2.9 A resolution by X-ray fiber diffraction. J Mol Biol. 1989 Jul 20;208(2):307–325. doi: 10.1016/0022-2836(89)90391-4. [DOI] [PubMed] [Google Scholar]
  16. Pfitzner U. M., Pfitzner A. J. Expression of a viral avirulence gene in transgenic plants is sufficient to induce the hypersensitive defense reaction. Mol Plant Microbe Interact. 1992 Jul-Aug;5(4):318–321. doi: 10.1094/mpmi-5-318. [DOI] [PubMed] [Google Scholar]
  17. Stintzi A., Heitz T., Prasad V., Wiedemann-Merdinoglu S., Kauffmann S., Geoffroy P., Legrand M., Fritig B. Plant 'pathogenesis-related' proteins and their role in defense against pathogens. Biochimie. 1993;75(8):687–706. doi: 10.1016/0300-9084(93)90100-7. [DOI] [PubMed] [Google Scholar]
  18. Turpen T. H., Reinl S. J., Charoenvit Y., Hoffman S. L., Fallarme V., Grill L. K. Malarial epitopes expressed on the surface of recombinant tobacco mosaic virus. Biotechnology (N Y) 1995 Jan;13(1):53–57. doi: 10.1038/nbt0195-53. [DOI] [PubMed] [Google Scholar]
  19. Vieira J., Messing J. Production of single-stranded plasmid DNA. Methods Enzymol. 1987;153:3–11. doi: 10.1016/0076-6879(87)53044-0. [DOI] [PubMed] [Google Scholar]
  20. Whitham S., Dinesh-Kumar S. P., Choi D., Hehl R., Corr C., Baker B. The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell. 1994 Sep 23;78(6):1101–1115. doi: 10.1016/0092-8674(94)90283-6. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES