Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1996 Feb;8(2):189–201. doi: 10.1105/tpc.8.2.189

Localization of Actin mRNA during the Establishment of Cell Polarity and Early Cell Divisions in Fucus Embryos.

F Y Bouget 1, S Gerttula 1, S L Shaw 1, R S Quatrano 1
PMCID: PMC161091  PMID: 12239382

Abstract

Localization of mRNA is a well-described mechanism to account for the asymmetric distribution of proteins in polarized somatic cells and embryos of animals. In zygotes of the brown alga Fucus, F-actin is localized at the site of polar growth and accumulates at the cell plates of the first two divisions of the embryo. We used a nonradioactive, whole-mount in situ hybridization protocol to show the pattern of actin mRNA localization. Until the first cell division, the pattern of actin mRNA localization is identical to that of total poly(A)+ RNA, that is, a symmetrical distribution in the zygote followed by an actin-dependent accumulation at the thallus pole at the time of polar axis fixation. At the end of the first division, actin mRNA specifically is redistributed from the thallus pole to the cell plates of the first two divisions in the rhizoid. This specific pattern of localization in the zygote and embryo involves the redistribution of previously synthesized actin mRNA. The initial asymmetry of actin mRNA at the thallus pole of the zygote requires polar axis fixation and microfilaments but not microtubules, cell division, or polar growth. However, redistribution of actin mRNA from the thallus pole to the first cell plate is insensitive to cytoskeletal inhibitors but is dependent on cell plate formation. The F-actin that accumulates at the rhizoid tip is not accompanied by the localization of actin mRNA. However, maintenance of an accumulation of actin protein at the cell plates of the rhizoid could be explained, at least partially, by a mechanism involving localization of actin mRNA at these sites. The pattern and requirements for actin mRNA localization in the Fucus embryo may be relevant to polarization of the embryo and asymmetric cell divisions in higher plants as well as in other tip-growing plant cells.

Full Text

The Full Text of this article is available as a PDF (3.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beach R. L., Jeffery W. R. Temporal and spatial expression of a cytoskeletal actin gene in the ascidian Styela clava. Dev Genet. 1990;11(1):2–14. doi: 10.1002/dvg.1020110103. [DOI] [PubMed] [Google Scholar]
  2. Bouget F. Y., Gerttula S., Quatrano R. S. Spatial redistribution of poly(A)+ RNA during polarization of the Fucus zygote is dependent upon microfilaments. Dev Biol. 1995 Sep;171(1):258–261. doi: 10.1006/dbio.1995.1277. [DOI] [PubMed] [Google Scholar]
  3. Brawley S. H., Quatrano R. S. Sulfation of fucoidin in Fucus embryos. IV. Autoradiographic investigations of fucoidin sulfation and secretion during differentiation and the effect of cytochalasin treatment. Dev Biol. 1979 Dec;73(2):193–205. doi: 10.1016/0012-1606(79)90063-0. [DOI] [PubMed] [Google Scholar]
  4. Brawley S. H., Quatrano R. S., Wetherbee R. Fine-structural studies of the gametes and embryo of Fucus vesiculosus L. (Phaeophyta). III. Cytokinesis and the multicellular embryo. J Cell Sci. 1977 Apr;24:275–294. doi: 10.1242/jcs.24.1.275. [DOI] [PubMed] [Google Scholar]
  5. Brawley S. H., Robinson K. R. Cytochalasin treatment disrupts the endogenous currents associated with cell polarization in fucoid zygotes: studies of the role of F-actin in embryogenesis. J Cell Biol. 1985 Apr;100(4):1173–1184. doi: 10.1083/jcb.100.4.1173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Burn T. C., Vigoreaux J. O., Tobin S. L. Alternative 5C actin transcripts are localized in different patterns during Drosophila embryogenesis. Dev Biol. 1989 Feb;131(2):345–355. doi: 10.1016/s0012-1606(89)80008-9. [DOI] [PubMed] [Google Scholar]
  7. Cheng H., Bjerknes M. Asymmetric distribution of actin mRNA and cytoskeletal pattern generation in polarized epithelial cells. J Mol Biol. 1989 Dec 5;210(3):541–549. doi: 10.1016/0022-2836(89)90130-7. [DOI] [PubMed] [Google Scholar]
  8. Cox K. H., DeLeon D. V., Angerer L. M., Angerer R. C. Detection of mrnas in sea urchin embryos by in situ hybridization using asymmetric RNA probes. Dev Biol. 1984 Feb;101(2):485–502. doi: 10.1016/0012-1606(84)90162-3. [DOI] [PubMed] [Google Scholar]
  9. Ephrussi A., Lehmann R. Induction of germ cell formation by oskar. Nature. 1992 Jul 30;358(6385):387–392. doi: 10.1038/358387a0. [DOI] [PubMed] [Google Scholar]
  10. Fulton A. B. Spatial organization of the synthesis of cytoskeletal proteins. J Cell Biochem. 1993 Jun;52(2):148–152. doi: 10.1002/jcb.240520206. [DOI] [PubMed] [Google Scholar]
  11. Goodner B. W., Davis J. D., Quatrano R. S. Sequence of actin cDNA from Fucus disticus. Plant Physiol. 1995 Mar;107(3):1007–1008. doi: 10.1104/pp.107.3.1007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Goodner B., Quatrano R. S. Fucus Embryogenesis: A Model to Study the Establishment of Polarity. Plant Cell. 1993 Oct;5(10):1471–1481. doi: 10.1105/tpc.5.10.1471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hill M. A., Gunning P. Beta and gamma actin mRNAs are differentially located within myoblasts. J Cell Biol. 1993 Aug;122(4):825–832. doi: 10.1083/jcb.122.4.825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Horvitz H. R., Herskowitz I. Mechanisms of asymmetric cell division: two Bs or not two Bs, that is the question. Cell. 1992 Jan 24;68(2):237–255. doi: 10.1016/0092-8674(92)90468-r. [DOI] [PubMed] [Google Scholar]
  15. Jeffery W. R. Localized mRNA and the egg cytoskeleton. Int Rev Cytol. 1989;119:151–195. doi: 10.1016/s0074-7696(08)60651-8. [DOI] [PubMed] [Google Scholar]
  16. Jeffery W. R., Tomlinson C. R., Brodeur R. D. Localization of actin messenger RNA during early ascidian development. Dev Biol. 1983 Oct;99(2):408–417. doi: 10.1016/0012-1606(83)90290-7. [DOI] [PubMed] [Google Scholar]
  17. Jongens T. A., Hay B., Jan L. Y., Jan Y. N. The germ cell-less gene product: a posteriorly localized component necessary for germ cell development in Drosophila. Cell. 1992 Aug 21;70(4):569–584. doi: 10.1016/0092-8674(92)90427-e. [DOI] [PubMed] [Google Scholar]
  18. Kislauskis E. H., Singer R. H. Determinants of mRNA localization. Curr Opin Cell Biol. 1992 Dec;4(6):975–978. doi: 10.1016/0955-0674(92)90128-y. [DOI] [PubMed] [Google Scholar]
  19. Kislauskis E. H., Zhu X., Singer R. H. Sequences responsible for intracellular localization of beta-actin messenger RNA also affect cell phenotype. J Cell Biol. 1994 Oct;127(2):441–451. doi: 10.1083/jcb.127.2.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kropf D. L., Berge S. K., Quatrano R. S. Actin Localization during Fucus Embryogenesis. Plant Cell. 1989 Feb;1(2):191–200. doi: 10.1105/tpc.1.2.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kropf D. L. Cytoskeletal control of cell polarity in a plant zygote. Dev Biol. 1994 Oct;165(2):361–371. doi: 10.1006/dbio.1994.1259. [DOI] [PubMed] [Google Scholar]
  22. Kropf D. L., Hopkins R., Quatrano R. S. Protein synthesis and morphogenesis are not tightly linked during embryogenesis in Fucus. Dev Biol. 1989 Aug;134(2):451–461. doi: 10.1016/0012-1606(89)90118-8. [DOI] [PubMed] [Google Scholar]
  23. Lawrence J. B., Singer R. H. Intracellular localization of messenger RNAs for cytoskeletal proteins. Cell. 1986 May 9;45(3):407–415. doi: 10.1016/0092-8674(86)90326-0. [DOI] [PubMed] [Google Scholar]
  24. Li X., Franceschi V. R., Okita T. W. Segregation of storage protein mRNAs on the rough endoplasmic reticulum membranes of rice endosperm cells. Cell. 1993 Mar 26;72(6):869–879. doi: 10.1016/0092-8674(93)90576-c. [DOI] [PubMed] [Google Scholar]
  25. MacLean-Fletcher S., Pollard T. D. Mechanism of action of cytochalasin B on actin. Cell. 1980 Jun;20(2):329–341. doi: 10.1016/0092-8674(80)90619-4. [DOI] [PubMed] [Google Scholar]
  26. Poethig S. Genetic mosaics and cell lineage analysis in plants. Trends Genet. 1989 Aug;5(8):273–277. doi: 10.1016/0168-9525(89)90101-7. [DOI] [PubMed] [Google Scholar]
  27. Pokrywka N. J., Stephenson E. C. Microtubules mediate the localization of bicoid RNA during Drosophila oogenesis. Development. 1991 Sep;113(1):55–66. doi: 10.1242/dev.113.1.55. [DOI] [PubMed] [Google Scholar]
  28. Quatrano R. S. Rhizoid formation in Fucus zygotes: dependence on protein and ribonucleic acid syntheses. Science. 1968 Oct 25;162(3852):468–470. doi: 10.1126/science.162.3852.468. [DOI] [PubMed] [Google Scholar]
  29. Quatrano R. S. Separation of processes associated with differentiation of two-celled Fucus embryos. Dev Biol. 1973 Jan;30(1):209–213. doi: 10.1016/0012-1606(73)90059-6. [DOI] [PubMed] [Google Scholar]
  30. Raff J. W., Whitfield W. G., Glover D. M. Two distinct mechanisms localise cyclin B transcripts in syncytial Drosophila embryos. Development. 1990 Dec;110(4):1249–1261. doi: 10.1242/dev.110.4.1249. [DOI] [PubMed] [Google Scholar]
  31. Seydoux G., Fire A. Soma-germline asymmetry in the distributions of embryonic RNAs in Caenorhabditis elegans. Development. 1994 Oct;120(10):2823–2834. doi: 10.1242/dev.120.10.2823. [DOI] [PubMed] [Google Scholar]
  32. St Johnston D., Nüsslein-Volhard C. The origin of pattern and polarity in the Drosophila embryo. Cell. 1992 Jan 24;68(2):201–219. doi: 10.1016/0092-8674(92)90466-p. [DOI] [PubMed] [Google Scholar]
  33. St Johnston D. The intracellular localization of messenger RNAs. Cell. 1995 Apr 21;81(2):161–170. doi: 10.1016/0092-8674(95)90324-0. [DOI] [PubMed] [Google Scholar]
  34. Sundell C. L., Singer R. H. Requirement of microfilaments in sorting of actin messenger RNA. Science. 1991 Sep 13;253(5025):1275–1277. doi: 10.1126/science.1891715. [DOI] [PubMed] [Google Scholar]
  35. Tautz D., Pfeifle C. A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma. 1989 Aug;98(2):81–85. doi: 10.1007/BF00291041. [DOI] [PubMed] [Google Scholar]
  36. Thomsen G. H., Melton D. A. Processed Vg1 protein is an axial mesoderm inducer in Xenopus. Cell. 1993 Aug 13;74(3):433–441. doi: 10.1016/0092-8674(93)80045-g. [DOI] [PubMed] [Google Scholar]
  37. Tobin S. L., Cook P. J., Burn T. C. Transcripts of individual Drosophila actin genes are differentially distributed during embryogenesis. Dev Genet. 1990;11(1):15–26. doi: 10.1002/dvg.1020110104. [DOI] [PubMed] [Google Scholar]
  38. Torres-Ruiz R. A., Jürgens G. Mutations in the FASS gene uncouple pattern formation and morphogenesis in Arabidopsis development. Development. 1994 Oct;120(10):2967–2978. doi: 10.1242/dev.120.10.2967. [DOI] [PubMed] [Google Scholar]
  39. Traas J. A., Doonan J. H., Rawlins D. J., Shaw P. J., Watts J., Lloyd C. W. An actin network is present in the cytoplasm throughout the cell cycle of carrot cells and associates with the dividing nucleus. J Cell Biol. 1987 Jul;105(1):387–395. doi: 10.1083/jcb.105.1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wharton R. P., Struhl G. RNA regulatory elements mediate control of Drosophila body pattern by the posterior morphogen nanos. Cell. 1991 Nov 29;67(5):955–967. doi: 10.1016/0092-8674(91)90368-9. [DOI] [PubMed] [Google Scholar]
  41. Yisraeli J. K., Sokol S., Melton D. A. A two-step model for the localization of maternal mRNA in Xenopus oocytes: involvement of microtubules and microfilaments in the translocation and anchoring of Vg1 mRNA. Development. 1990 Feb;108(2):289–298. doi: 10.1242/dev.108.2.289. [DOI] [PubMed] [Google Scholar]
  42. Zhang D. H., Callaham D. A., Hepler P. K. Regulation of anaphase chromosome motion in Tradescantia stamen hair cells by calcium and related signaling agents. J Cell Biol. 1990 Jul;111(1):171–182. doi: 10.1083/jcb.111.1.171. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES