Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1996 Feb;8(2):213–239. doi: 10.1105/tpc.8.2.213

Ovule development: identification of stage-specific and tissue-specific cDNAs.

J A Nadeau 1, X S Zhang 1, J Li 1, S D O'Neill 1
PMCID: PMC161093  PMID: 8742709

Abstract

A differential screening approach was used to identify seven ovule-specific cDNAs representing genes that are expressed in a stage-specific manner during ovule development. The Phalaenopsis orchid takes 80 days to complete the sequence of ovule developmental events, making it a good system to isolate stage-specific ovule genes. We constructed cDNA libraries from orchid ovule tissue during archesporial cell differentiation, megasporocyte formation, and the transition to meiosis, as well as during the final mitotic divisions of female gametophyte development. RNA gel blot hybridization analysis revealed that four clones were stage specific and expressed solely in ovule tissue, whereas one clone was specific to pollen tubes. Two other clones were not ovule specific. Sequence analysis and in situ hybridization revealed the identities and domain of expression of several of the cDNAs. O39 encodes a putative homeobox transcription factor that is expressed early in the differentiation of the ovule primordium; O40 encodes a cytochrome P450 monooxygenase (CYP78A2) that is pollen tube specific. O108 encodes a protein of unknown function that is expressed exclusively in the outer layer of the outer integument and in the female gametophyte of mature ovules. O126 encodes a glycine-rich protein that is expressed in mature ovules, and O141 encodes a cysteine proteinase that is expressed in the outer integument of ovules during seed formation. Sequences homologous to these ovule clones can now be isolated from other organisms, and this should facilitate their functional characterization.

Full Text

The Full Text of this article is available as a PDF (6.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akasofu H., Yamauchi D., Mitsuhashi W., Minamikawa T. Nucleotide sequence of cDNA for sulfhydryl-endopeptidase (SH-EP) from cotyledons of germinating Vigna mungo seeds. Nucleic Acids Res. 1989 Aug 25;17(16):6733–6733. doi: 10.1093/nar/17.16.6733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  3. Bellmann R., Werr W. Zmhox1a, the product of a novel maize homeobox gene, interacts with the Shrunken 26 bp feedback control element. EMBO J. 1992 Sep;11(9):3367–3374. doi: 10.1002/j.1460-2075.1992.tb05415.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bozak K. R., Yu H., Sirevåg R., Christoffersen R. E. Sequence analysis of ripening-related cytochrome P-450 cDNAs from avocado fruit. Proc Natl Acad Sci U S A. 1990 May;87(10):3904–3908. doi: 10.1073/pnas.87.10.3904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Castelli-Gair J., Greig S., Micklem G., Akam M. Dissecting the temporal requirements for homeotic gene function. Development. 1994 Jul;120(7):1983–1995. doi: 10.1242/dev.120.7.1983. [DOI] [PubMed] [Google Scholar]
  6. Cohen L. W., Coghlan V. M., Dihel L. C. Cloning and sequencing of papain-encoding cDNA. Gene. 1986;48(2-3):219–227. doi: 10.1016/0378-1119(86)90080-6. [DOI] [PubMed] [Google Scholar]
  7. Condit C. M., McLean B. G., Meagher R. B. Characterization of the expression of the petunia glycine-rich protein-1 gene product. Plant Physiol. 1990 Jun;93(2):596–602. doi: 10.1104/pp.93.2.596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Condit C. M., Meagher R. B. Expression of a gene encoding a glycine-rich protein in petunia. Mol Cell Biol. 1987 Dec;7(12):4273–4279. doi: 10.1128/mcb.7.12.4273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Crétin C., Puigdomènech P. Glycine-rich RNA-binding proteins from Sorghum vulgare. Plant Mol Biol. 1990 Nov;15(5):783–785. doi: 10.1007/BF00016128. [DOI] [PubMed] [Google Scholar]
  10. Denecke J., De Rycke R., Botterman J. Plant and mammalian sorting signals for protein retention in the endoplasmic reticulum contain a conserved epitope. EMBO J. 1992 Jun;11(6):2345–2355. doi: 10.1002/j.1460-2075.1992.tb05294.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Docherty K., Carroll R. J., Steiner D. F. Conversion of proinsulin to insulin: involvement of a 31,500 molecular weight thiol protease. Proc Natl Acad Sci U S A. 1982 Aug;79(15):4613–4617. doi: 10.1073/pnas.79.15.4613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Donaldson R. P., Luster D. G. Multiple forms of plant cytochromes p-450. Plant Physiol. 1991 Jul;96(3):669–674. doi: 10.1104/pp.96.3.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Drubin D. G. Development of cell polarity in budding yeast. Cell. 1991 Jun 28;65(7):1093–1096. doi: 10.1016/0092-8674(91)90001-f. [DOI] [PubMed] [Google Scholar]
  14. Evans P. T., Malmberg R. L. Alternative pathways of tobacco placental development: time of commitment and analysis of a mutant. Dev Biol. 1989 Nov;136(1):273–283. doi: 10.1016/0012-1606(89)90148-6. [DOI] [PubMed] [Google Scholar]
  15. Fang R. X., Pang Z., Gao D. M., Mang K. Q., Chua N. H. cDNA sequence of a virus-inducible, glycine-rich protein gene from rice. Plant Mol Biol. 1991 Dec;17(6):1255–1257. doi: 10.1007/BF00028742. [DOI] [PubMed] [Google Scholar]
  16. Gaiser J. C., Robinson-Beers K., Gasser C. S. The Arabidopsis SUPERMAN Gene Mediates Asymmetric Growth of the Outer Integument of Ovules. Plant Cell. 1995 Mar;7(3):333–345. doi: 10.1105/tpc.7.3.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gehring W. J. Exploring the homeobox. Gene. 1993 Dec 15;135(1-2):215–221. doi: 10.1016/0378-1119(93)90068-e. [DOI] [PubMed] [Google Scholar]
  18. Guerrero F. D., Jones J. T., Mullet J. E. Turgor-responsive gene transcription and RNA levels increase rapidly when pea shoots are wilted. Sequence and expression of three inducible genes. Plant Mol Biol. 1990 Jul;15(1):11–26. doi: 10.1007/BF00017720. [DOI] [PubMed] [Google Scholar]
  19. Hartings H., Maddaloni M., Lazzaroni N., Di Fonzo N., Motto M., Salamini F., Thompson R. The O2 gene which regulates zein deposition in maize endosperm encodes a protein with structural homologies to transcriptional activators. EMBO J. 1989 Oct;8(10):2795–2801. doi: 10.1002/j.1460-2075.1989.tb08425.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hinnebusch A. G. Involvement of an initiation factor and protein phosphorylation in translational control of GCN4 mRNA. Trends Biochem Sci. 1990 Apr;15(4):148–152. doi: 10.1016/0968-0004(90)90215-w. [DOI] [PubMed] [Google Scholar]
  21. Holton T. A., Brugliera F., Lester D. R., Tanaka Y., Hyland C. D., Menting J. G., Lu C. Y., Farcy E., Stevenson T. W., Cornish E. C. Cloning and expression of cytochrome P450 genes controlling flower colour. Nature. 1993 Nov 18;366(6452):276–279. doi: 10.1038/366276a0. [DOI] [PubMed] [Google Scholar]
  22. Hulskamp M., Schneitz K., Pruitt R. E. Genetic Evidence for a Long-Range Activity That Directs Pollen Tube Guidance in Arabidopsis. Plant Cell. 1995 Jan;7(1):57–64. doi: 10.1105/tpc.7.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Jacobsen S. E., Olszewski N. E. Characterization of the Arrest in Anther Development Associated with Gibberellin Deficiency of the gib-1 Mutant of Tomato. Plant Physiol. 1991 Sep;97(1):409–414. doi: 10.1104/pp.97.1.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kalinski A., Weisemann J. M., Matthews B. F., Herman E. M. Molecular cloning of a protein associated with soybean seed oil bodies that is similar to thiol proteases of the papain family. J Biol Chem. 1990 Aug 15;265(23):13843–13848. [PubMed] [Google Scholar]
  25. Kamalay J. C., Goldberg R. B. Organ-specific nuclear RNAs in tobacco. Proc Natl Acad Sci U S A. 1984 May;81(9):2801–2805. doi: 10.1073/pnas.81.9.2801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kamalay J. C., Goldberg R. B. Regulation of structural gene expression in tobacco. Cell. 1980 Apr;19(4):935–946. doi: 10.1016/0092-8674(80)90085-9. [DOI] [PubMed] [Google Scholar]
  27. Kamphuis I. G., Drenth J., Baker E. N. Thiol proteases. Comparative studies based on the high-resolution structures of papain and actinidin, and on amino acid sequence information for cathepsins B and H, and stem bromelain. J Mol Biol. 1985 Mar 20;182(2):317–329. doi: 10.1016/0022-2836(85)90348-1. [DOI] [PubMed] [Google Scholar]
  28. Keller B., Sauer N., Lamb C. J. Glycine-rich cell wall proteins in bean: gene structure and association of the protein with the vascular system. EMBO J. 1988 Dec 1;7(12):3625–3633. doi: 10.1002/j.1460-2075.1988.tb03243.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Keller B., Templeton M. D., Lamb C. J. Specific localization of a plant cell wall glycine-rich protein in protoxylem cells of the vascular system. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1529–1533. doi: 10.1073/pnas.86.5.1529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Koehler S., Ho T. H. Purification and characterization of gibberellic Acid-induced cysteine endoproteases in barley aleurone layers. Plant Physiol. 1988 May;87(1):95–103. doi: 10.1104/pp.87.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Koizumi M., Yamaguchi-Shinozaki K., Tsuji H., Shinozaki K. Structure and expression of two genes that encode distinct drought-inducible cysteine proteinases in Arabidopsis thaliana. Gene. 1993 Jul 30;129(2):175–182. doi: 10.1016/0378-1119(93)90266-6. [DOI] [PubMed] [Google Scholar]
  32. Koltunow A. M., Truettner J., Cox K. H., Wallroth M., Goldberg R. B. Different Temporal and Spatial Gene Expression Patterns Occur during Anther Development. Plant Cell. 1990 Dec;2(12):1201–1224. doi: 10.1105/tpc.2.12.1201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Korfhage U., Trezzini G. F., Meier I., Hahlbrock K., Somssich I. E. Plant homeodomain protein involved in transcriptional regulation of a pathogen defense-related gene. Plant Cell. 1994 May;6(5):695–708. doi: 10.1105/tpc.6.5.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Larkin J. C. Isolation of a cytochrome P450 homologue preferentially expressed in developing inflorescences of Zea mays. Plant Mol Biol. 1994 Jun;25(3):343–353. doi: 10.1007/BF00043864. [DOI] [PubMed] [Google Scholar]
  35. Lawrence P. A., Morata G. Homeobox genes: their function in Drosophila segmentation and pattern formation. Cell. 1994 Jul 29;78(2):181–189. doi: 10.1016/0092-8674(94)90289-5. [DOI] [PubMed] [Google Scholar]
  36. Lei M., Wu R. A novel glycine-rich cell wall protein gene in rice. Plant Mol Biol. 1991 Feb;16(2):187–198. doi: 10.1007/BF00020551. [DOI] [PubMed] [Google Scholar]
  37. Leon-Kloosterziel K. M., Keijzer C. J., Koornneef M. A Seed Shape Mutant of Arabidopsis That Is Affected in Integument Development. Plant Cell. 1994 Mar;6(3):385–392. doi: 10.1105/tpc.6.3.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Linthorst H. J., van Loon L. C., Memelink J., Bol J. F. Characterization of cDNA clones for a virus-inducible, glycine-rich protein from petunia. Plant Mol Biol. 1990 Sep;15(3):521–523. doi: 10.1007/BF00019172. [DOI] [PubMed] [Google Scholar]
  39. Linthorst H. J., van der Does C., Brederode F. T., Bol J. F. Circadian expression and induction by wounding of tobacco genes for cysteine proteinase. Plant Mol Biol. 1993 Feb;21(4):685–694. doi: 10.1007/BF00014551. [DOI] [PubMed] [Google Scholar]
  40. Loh Y. P., Gainer H. Characterization of pro-opiocortin-converting activity in purified secretory granules from rat pituitary neurointermediate lobe. Proc Natl Acad Sci U S A. 1982 Jan;79(1):108–112. doi: 10.1073/pnas.79.1.108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Martin S. J., Green D. R., Cotter T. G. Dicing with death: dissecting the components of the apoptosis machinery. Trends Biochem Sci. 1994 Jan;19(1):26–30. doi: 10.1016/0968-0004(94)90170-8. [DOI] [PubMed] [Google Scholar]
  42. Mitsuhashi W., Minamikawa T. Synthesis and Posttranslational Activation of Sulfhydryl-Endopeptidase in Cotyledons of Germinating Vigna mungo Seeds. Plant Physiol. 1989 Jan;89(1):274–279. doi: 10.1104/pp.89.1.274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Mo Y., Nagel C., Taylor L. P. Biochemical complementation of chalcone synthase mutants defines a role for flavonols in functional pollen. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):7213–7217. doi: 10.1073/pnas.89.15.7213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Modrusan Z., Reiser L., Feldmann K. A., Fischer R. L., Haughn G. W. Homeotic Transformation of Ovules into Carpel-like Structures in Arabidopsis. Plant Cell. 1994 Mar;6(3):333–349. doi: 10.1105/tpc.6.3.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Nadeau J. A., Zhang X. S., Nair H., O'Neill S. D. Temporal and spatial regulation of 1-aminocyclopropane-1-carboxylate oxidase in the pollination-induced senescence of orchid flowers. Plant Physiol. 1993 Sep;103(1):31–39. doi: 10.1104/pp.103.1.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Nebert D. W., Gonzalez F. J. P450 genes: structure, evolution, and regulation. Annu Rev Biochem. 1987;56:945–993. doi: 10.1146/annurev.bi.56.070187.004501. [DOI] [PubMed] [Google Scholar]
  47. Nelson D. R., Kamataki T., Waxman D. J., Guengerich F. P., Estabrook R. W., Feyereisen R., Gonzalez F. J., Coon M. J., Gunsalus I. C., Gotoh O. The P450 superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA Cell Biol. 1993 Jan-Feb;12(1):1–51. doi: 10.1089/dna.1993.12.1. [DOI] [PubMed] [Google Scholar]
  48. O'Neill S. D., Nadeau J. A., Zhang X. S., Bui A. Q., Halevy A. H. Interorgan regulation of ethylene biosynthetic genes by pollination. Plant Cell. 1993 Apr;5(4):419–432. doi: 10.1105/tpc.5.4.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Obokata J., Ohme M., Hayashida N. Nucleotide sequence of a cDNA clone encoding a putative glycine-rich protein of 19.7 kDa in Nicotiana sylvestris. Plant Mol Biol. 1991 Oct;17(4):953–955. doi: 10.1007/BF00037080. [DOI] [PubMed] [Google Scholar]
  50. Quigley F., Villiot M. L., Mache R. Nucleotide sequence and expression of a novel glycine-rich protein gene from Arabidopsis thaliana. Plant Mol Biol. 1991 Oct;17(4):949–952. doi: 10.1007/BF00037079. [DOI] [PubMed] [Google Scholar]
  51. Reiser L., Fischer R. L. The Ovule and the Embryo Sac. Plant Cell. 1993 Oct;5(10):1291–1301. doi: 10.1105/tpc.5.10.1291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Rerie W. G., Feldmann K. A., Marks M. D. The GLABRA2 gene encodes a homeo domain protein required for normal trichome development in Arabidopsis. Genes Dev. 1994 Jun 15;8(12):1388–1399. doi: 10.1101/gad.8.12.1388. [DOI] [PubMed] [Google Scholar]
  53. Robinson-Beers K., Pruitt R. E., Gasser C. S. Ovule Development in Wild-Type Arabidopsis and Two Female-Sterile Mutants. Plant Cell. 1992 Oct;4(10):1237–1249. doi: 10.1105/tpc.4.10.1237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Rogers J. C., Dean D., Heck G. R. Aleurain: a barley thiol protease closely related to mammalian cathepsin H. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6512–6516. doi: 10.1073/pnas.82.19.6512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Rohde W., Rosch K., Kröger K., Salamini F. Nucleotide sequence of a Hordeum vulgare gene encoding a glycine-rich protein with homology to vertebrate cytokeratins. Plant Mol Biol. 1990 Jun;14(6):1057–1059. doi: 10.1007/BF00019404. [DOI] [PubMed] [Google Scholar]
  56. Ruberti I., Sessa G., Lucchetti S., Morelli G. A novel class of plant proteins containing a homeodomain with a closely linked leucine zipper motif. EMBO J. 1991 Jul;10(7):1787–1791. doi: 10.1002/j.1460-2075.1991.tb07703.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Ryser U., Keller B. Ultrastructural Localization of a Bean Glycine-Rich Protein in Unlignified Primary Walls of Protoxylem Cells. Plant Cell. 1992 Jul;4(7):773–783. doi: 10.1105/tpc.4.7.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Rédei G P. Non-Mendelian Megagametogenesis in Arabidopsis. Genetics. 1965 Jun;51(6):857–872. doi: 10.1093/genetics/51.6.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Schaffer M. A., Fischer R. L. Analysis of mRNAs that Accumulate in Response to Low Temperature Identifies a Thiol Protease Gene in Tomato. Plant Physiol. 1988 Jun;87(2):431–436. doi: 10.1104/pp.87.2.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Schena M., Davis R. W. HD-Zip proteins: members of an Arabidopsis homeodomain protein superfamily. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3894–3898. doi: 10.1073/pnas.89.9.3894. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Schindler U., Beckmann H., Cashmore A. R. HAT3.1, a novel Arabidopsis homeodomain protein containing a conserved cysteine-rich region. Plant J. 1993 Jul;4(1):137–150. doi: 10.1046/j.1365-313x.1993.04010137.x. [DOI] [PubMed] [Google Scholar]
  62. Sheng J., Jeong J., Mehdy M. C. Developmental regulation and phytochrome-mediated induction of mRNAs encoding a proline-rich protein, glycine-rich proteins, and hydroxyproline-rich glycoproteins in Phaseolus vulgaris L. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):828–832. doi: 10.1073/pnas.90.3.828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Showalter A. M., Butt A. D., Kim S. Molecular details of tomato extensin and glycine-rich protein gene expression. Plant Mol Biol. 1992 May;19(2):205–215. doi: 10.1007/BF00027342. [DOI] [PubMed] [Google Scholar]
  64. Singh K., Dennis E. S., Ellis J. G., Llewellyn D. J., Tokuhisa J. G., Wahleithner J. A., Peacock W. J. OCSBF-1, a maize ocs enhancer binding factor: isolation and expression during development. Plant Cell. 1990 Sep;2(9):891–903. doi: 10.1105/tpc.2.9.891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. St Johnston D., Nüsslein-Volhard C. The origin of pattern and polarity in the Drosophila embryo. Cell. 1992 Jan 24;68(2):201–219. doi: 10.1016/0092-8674(92)90466-p. [DOI] [PubMed] [Google Scholar]
  66. Sturm A. A Wound-Inducible Glycine-Rich Protein from Daucus carota with Homology to Single-Stranded Nucleic Acid-Binding Proteins. Plant Physiol. 1992 Aug;99(4):1689–1692. doi: 10.1104/pp.99.4.1689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Tanaka T., Yamauchi D., Minamikawa T. Nucleotide sequence of cDNA for an endopeptidase (EP-C1) from pods of maturing Phaseolus vulgaris fruits. Plant Mol Biol. 1991 Jun;16(6):1083–1084. doi: 10.1007/BF00016081. [DOI] [PubMed] [Google Scholar]
  68. Ursin V. M., Yamaguchi J., McCormick S. Gametophytic and sporophytic expression of anther-specific genes in developing tomato anthers. Plant Cell. 1989 Jul;1(7):727–736. doi: 10.1105/tpc.1.7.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Vaux D. L., Haecker G., Strasser A. An evolutionary perspective on apoptosis. Cell. 1994 Mar 11;76(5):777–779. doi: 10.1016/0092-8674(94)90350-6. [DOI] [PubMed] [Google Scholar]
  70. Vollbrecht E., Veit B., Sinha N., Hake S. The developmental gene Knotted-1 is a member of a maize homeobox gene family. Nature. 1991 Mar 21;350(6315):241–243. doi: 10.1038/350241a0. [DOI] [PubMed] [Google Scholar]
  71. Williams J., Bulman M., Huttly A., Phillips A., Neill S. Characterization of a cDNA from Arabidopsis thaliana encoding a potential thiol protease whose expression is induced independently by wilting and abscisic acid. Plant Mol Biol. 1994 May;25(2):259–270. doi: 10.1007/BF00023242. [DOI] [PubMed] [Google Scholar]
  72. Winkler R. G., Helentjaris T. The maize Dwarf3 gene encodes a cytochrome P450-mediated early step in Gibberellin biosynthesis. Plant Cell. 1995 Aug;7(8):1307–1317. doi: 10.1105/tpc.7.8.1307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Zhang X. S., O'Neill S. D. Ovary and Gametophyte Development Are Coordinately Regulated by Auxin and Ethylene following Pollination. Plant Cell. 1993 Apr;5(4):403–418. doi: 10.1105/tpc.5.4.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. de Oliveira D. E., Franco L. O., Simoens C., Seurinck J., Coppieters J., Botterman J., Van Montagu M. Inflorescence-specific genes from Arabidopsis thaliana encoding glycine-rich proteins. Plant J. 1993 Apr;3(4):495–507. doi: 10.1046/j.1365-313x.1993.03040495.x. [DOI] [PubMed] [Google Scholar]
  75. de Oliveira D. E., Seurinck J., Inzé D., Van Montagu M., Botterman J. Differential expression of five Arabidopsis genes encoding glycine-rich proteins. Plant Cell. 1990 May;2(5):427–436. doi: 10.1105/tpc.2.5.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986 Jun 11;14(11):4683–4690. doi: 10.1093/nar/14.11.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES