Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1996 Mar;8(3):447–461. doi: 10.1105/tpc.8.3.447

Size and Structure of Replicating Mitochondrial DNA in Cultured Tobacco Cells.

DJ Oldenburg 1, AJ Bendich 1
PMCID: PMC161112  PMID: 12239390

Abstract

The BY-2 tobacco cell line was used to study the size and structure of replicating mitochondrial DNA (mtDNA). Approximately 70 to 90% of the newly synthesized mtDNA did not migrate during pulsed-field gel electrophoresis. Moving pictures of the fluorescently labeled molecules showed that most of the immobile well-bound DNA was in structures larger than the size of the BY-2 mitochondrial genome of ~270 kb. Most of the structures appeared as complex forms with multiple DNA fibers. The sizes of the circular molecules that were also observed ranged continuously from ~20 to 560 kb without prominent size classes. Pulse-chase and mung bean nuclease experiments showed that the well-bound DNA contained single-stranded regions and was converted to linear molecules of between 50 and 150 kb. MtDNA replication in plants may be initiated by recombination events that create branched structures of multigenomic concatemers that are then processed to 50- to 150-kb subgenomic fragments.

Full Text

The Full Text of this article is available as a PDF (3.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. André C. P., Walbot V. Pulsed-field gel mapping of maize mitochondrial chromosomes. Mol Gen Genet. 1995 Apr 20;247(2):255–263. doi: 10.1007/BF00705657. [DOI] [PubMed] [Google Scholar]
  2. Backert S., Dörfel P., Börner T. Investigation of plant organellar DNAs by pulsed-field gel electrophoresis. Curr Genet. 1995 Sep;28(4):390–399. doi: 10.1007/BF00326439. [DOI] [PubMed] [Google Scholar]
  3. Bendich A. J. Reaching for the ring: the study of mitochondrial genome structure. Curr Genet. 1993 Oct;24(4):279–290. doi: 10.1007/BF00336777. [DOI] [PubMed] [Google Scholar]
  4. Bendich A. J. Structural analysis of mitochondrial DNA molecules from fungi and plants using moving pictures and pulsed-field gel electrophoresis. J Mol Biol. 1996 Feb 2;255(4):564–588. doi: 10.1006/jmbi.1996.0048. [DOI] [PubMed] [Google Scholar]
  5. Brewer B. J., Fangman W. L. The localization of replication origins on ARS plasmids in S. cerevisiae. Cell. 1987 Nov 6;51(3):463–471. doi: 10.1016/0092-8674(87)90642-8. [DOI] [PubMed] [Google Scholar]
  6. Hennessy K. M., Lee A., Chen E., Botstein D. A group of interacting yeast DNA replication genes. Genes Dev. 1991 Jun;5(6):958–969. doi: 10.1101/gad.5.6.958. [DOI] [PubMed] [Google Scholar]
  7. Kelly T. J., Martin G. S., Forsburg S. L., Stephen R. J., Russo A., Nurse P. The fission yeast cdc18+ gene product couples S phase to START and mitosis. Cell. 1993 Jul 30;74(2):371–382. doi: 10.1016/0092-8674(93)90427-r. [DOI] [PubMed] [Google Scholar]
  8. Kuroiwa T. Mitochondrial nuclei. Int Rev Cytol. 1982;75:1–59. doi: 10.1016/s0074-7696(08)61001-3. [DOI] [PubMed] [Google Scholar]
  9. Lockshon D., Zweifel S. G., Freeman-Cook L. L., Lorimer H. E., Brewer B. J., Fangman W. L. A role for recombination junctions in the segregation of mitochondrial DNA in yeast. Cell. 1995 Jun 16;81(6):947–955. doi: 10.1016/0092-8674(95)90014-4. [DOI] [PubMed] [Google Scholar]
  10. Maleszka R. Single-stranded regions in yeast mitochondrial DNA revealed by pulsed-field gel electrophoresis. Appl Theor Electrophor. 1993;3(6):259–263. [PubMed] [Google Scholar]
  11. Muise R. C., Hauswirth W. W. Selective DNA amplification regulates transcript levels in plant mitochondria. Curr Genet. 1995 Jul;28(2):113–121. doi: 10.1007/BF00315776. [DOI] [PubMed] [Google Scholar]
  12. Narayanan K. K., André C. P., Yang J., Walbot V. Organization of a 117-kb circular mitochondrial chromosome in IR36 rice. Curr Genet. 1993 Mar;23(3):248–254. doi: 10.1007/BF00351503. [DOI] [PubMed] [Google Scholar]
  13. Smith S. B., Bendich A. J. Electrophoretic charge density and persistence length of DNA as measured by fluorescence microscopy. 1990 Jul-Aug 5Biopolymers. 29(8-9):1167–1173. doi: 10.1002/bip.360290807. [DOI] [PubMed] [Google Scholar]
  14. Viret J. F., Bravo A., Alonso J. C. Recombination-dependent concatemeric plasmid replication. Microbiol Rev. 1991 Dec;55(4):675–683. doi: 10.1128/mr.55.4.675-683.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. de Haas J. M., Hille J., Kors F., van der Meer B., Kool A. J., Folkerts O., Nijkamp H. J. Two potential Petunia hybrida mitochondrial DNA replication origins show structural and in vitro functional homology with the animal mitochondrial DNA heavy and light strand replication origins. Curr Genet. 1991 Dec;20(6):503–513. doi: 10.1007/BF00334779. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES