Abstract
Phosphoenolpyruvate carboxylase (PEPC) was characterized in extracts from C4 mesophyll protoplasts isolated from Digitaria sanguinalis leaves and shown to display the structural, functional, and regulatory properties typical of a C4 PEPC. In situ increases in the apparent phosphorylation state of the enzyme and the activity of its Ca2+-independent protein-serine kinase were induced by light plus NH4Cl or methylamine. The photosynthesis-related metabolite 3-phosphoglycerate (3-PGA) was used as a substitute for the weak base in these experiments. The early effects of light plus the weak base or 3-PGA treatment were alkalinization of protoplast cytosolic pH, shown by fluorescence cytometry, and calcium mobilization from vacuoles, as suggested by the use of the calcium channel blockers TMB-8 and verapamil. The increases in PEPC kinase activity and the apparent phosphorylation state of PEPC also were blocked in situ by the electron transport and ATP synthesis inhibitors DCMU and gramicidin, respectively, the calcium/calmodulin antagonists W7, W5, and compound 48/80, and the cytosolic protein synthesis inhibitor cycloheximide. These results suggest that the production of ATP and/or NADPH by the illuminated mesophyll chloroplast is required for the activation of the transduction pathway, which presumably includes an upstream Ca2+-dependent protein kinase and a cytosolic protein synthesis event. The collective data support the view that the C4 PEPC light transduction pathway is contained entirely within the mesophyll cell and imply cross-talk between the mesophyll and bundle sheath cells in the form of the photosynthetic metabolite 3-PGA.
Full Text
The Full Text of this article is available as a PDF (4.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bakrim N., Echevarria C., Cretin C., Arrio-Dupont M., Pierre J. N., Vidal J., Chollet R., Gadal P. Regulatory phosphorylation of Sorghum leaf phosphoenolpyruvate carboxylase. Identification of the protein-serine kinase and some elements of the signal-transduction cascade. Eur J Biochem. 1992 Mar 1;204(2):821–830. doi: 10.1111/j.1432-1033.1992.tb16701.x. [DOI] [PubMed] [Google Scholar]
- Bakrim N., Prioul J. L., Deleens E., Rocher J. P., Arrio-Dupont M., Vidal J., Gadal P., Chollet R. Regulatory Phosphorylation of C4 Phosphoenolpyruvate Carboxylase (A Cardinal Event Influencing the Photosynthesis Rate in Sorghum and Maize). Plant Physiol. 1993 Mar;101(3):891–897. doi: 10.1104/pp.101.3.891. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bertl A., Felle H., Bentrup F. W. Amine Transport in Riccia fluitans: Cytoplasmic and Vacuolar pH Recorded by a pH-Sensitive Microelectrode. Plant Physiol. 1984 Sep;76(1):75–78. doi: 10.1104/pp.76.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Brosnan J. M., Sanders D. Identification and Characterization of High-Affinity Binding Sites for Inositol Trisphosphate in Red Beet. Plant Cell. 1993 Aug;5(8):931–940. doi: 10.1105/tpc.5.8.931. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buchanan B. B., Schürmann P., Jacquot J. P. Thioredoxin and metabolic regulation. Semin Cell Biol. 1994 Oct;5(5):285–293. doi: 10.1006/scel.1994.1035. [DOI] [PubMed] [Google Scholar]
- Crétin C., Bakrim N., Kéryer E., Santi S., Lepiniec L., Vidal J., Gadal P. Production in Escherichia coli of active Sorghum phosphoenolpyruvate carboxylase which can be phosphorylated. Plant Mol Biol. 1991 Jul;17(1):83–88. doi: 10.1007/BF00036808. [DOI] [PubMed] [Google Scholar]
- Echevarria C., Pacquit V., Bakrim N., Osuna L., Delgado B., Arrio-Dupont M., Vidal J. The effect of pH on the covalent and metabolic control of C4 phosphoenolpyruvate carboxylase from Sorghum leaf. Arch Biochem Biophys. 1994 Dec;315(2):425–430. doi: 10.1006/abbi.1994.1520. [DOI] [PubMed] [Google Scholar]
- Echevarría C., Vidal J., Jiao J. A., Chollet R. Reversible light activation of the phosphoenolpyruvate carboxylase protein-serine kinase in maize leaves. FEBS Lett. 1990 Nov 26;275(1-2):25–28. doi: 10.1016/0014-5793(90)81430-v. [DOI] [PubMed] [Google Scholar]
- Giglioli-Guivarc'h N., Pierre J. N., Vidal J., Brown S. Flow cytometric analysis of cytosolic pH of mesophyll cell protoplasts from the crabgrass Digitaria sanguinalis. Cytometry. 1996 Mar 1;23(3):241–249. doi: 10.1002/(SICI)1097-0320(19960301)23:3<241::AID-CYTO7>3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]
- Gilroy S., Bethke P. C., Jones R. L. Calcium homeostasis in plants. J Cell Sci. 1993 Oct;106(Pt 2):453–461. doi: 10.1242/jcs.106.2.453. [DOI] [PubMed] [Google Scholar]
- Gilroy S., Fricker M. D., Read N. D., Trewavas A. J. Role of Calcium in Signal Transduction of Commelina Guard Cells. Plant Cell. 1991 Apr;3(4):333–344. doi: 10.1105/tpc.3.4.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hidaka H., Sasaki Y., Tanaka T., Endo T., Ohno S., Fujii Y., Nagata T. N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide, a calmodulin antagonist, inhibits cell proliferation. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4354–4357. doi: 10.1073/pnas.78.7.4354. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Irving H. R., Gehring C. A., Parish R. W. Changes in cytosolic pH and calcium of guard cells precede stomatal movements. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1790–1794. doi: 10.1073/pnas.89.5.1790. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jiao J. A., Chollet R. Light activation of maize phosphoenolpyruvate carboxylase protein-serine kinase activity is inhibited by mesophyll and bundle sheath-directed photosynthesis inhibitors. Plant Physiol. 1992 Jan;98(1):152–156. doi: 10.1104/pp.98.1.152. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jiao J. A., Chollet R. Light/dark regulation of maize leaf phosphoenolpyruvate carboxylase by in vivo phosphorylation. Arch Biochem Biophys. 1988 Mar;261(2):409–417. doi: 10.1016/0003-9861(88)90357-8. [DOI] [PubMed] [Google Scholar]
- Jiao J. A., Chollet R. Regulatory seryl-phosphorylation of C4 phosphoenolpyruvate carboxylase by a soluble protein kinase from maize leaves. Arch Biochem Biophys. 1989 Mar;269(2):526–535. doi: 10.1016/0003-9861(89)90136-7. [DOI] [PubMed] [Google Scholar]
- Jiao J. A., Vidal J., Echevarría C., Chollet R. In vivo regulatory phosphorylation site in c(4)-leaf phosphoenolpyruvate carboxylase from maize and sorghum. Plant Physiol. 1991 May;96(1):297–301. doi: 10.1104/pp.96.1.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jiao J., Echevarría C., Vidal J., Chollet R. Protein turnover as a component in the light/dark regulation of phosphoenolpyruvate carboxylase protein-serine kinase activity in C4 plants. Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2712–2715. doi: 10.1073/pnas.88.7.2712. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Malagodi M. H., Chiou C. Y. Pharmacological evaluation of a new Ca2+ antagonist, 8-(N,N-diethylamino)-octyl-3,4,5-trimethoxybenzoate hydrochloride (TMB-8): studies in smooth muscles. Eur J Pharmacol. 1974 Jun;27(1):25–33. doi: 10.1016/0014-2999(74)90198-8. [DOI] [PubMed] [Google Scholar]
- McNaughton G. A., MacKintosh C., Fewson C. A., Wilkins M. B., Nimmo H. G. Illumination increases the phosphorylation state of maize leaf phosphoenolpyruvate carboxylase by causing an increase in the activity of a protein kinase. Biochim Biophys Acta. 1991 Jul 10;1093(2-3):189–195. doi: 10.1016/0167-4889(91)90122-e. [DOI] [PubMed] [Google Scholar]
- Neuhaus G., Bowler C., Kern R., Chua N. H. Calcium/calmodulin-dependent and -independent phytochrome signal transduction pathways. Cell. 1993 Jun 4;73(5):937–952. doi: 10.1016/0092-8674(93)90272-r. [DOI] [PubMed] [Google Scholar]
- Rink T. J., Tsien R. Y., Pozzan T. Cytoplasmic pH and free Mg2+ in lymphocytes. J Cell Biol. 1982 Oct;95(1):189–196. doi: 10.1083/jcb.95.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanders D., Hansen U. P., Slayman C. L. Role of the plasma membrane proton pump in pH regulation in non-animal cells. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5903–5907. doi: 10.1073/pnas.78.9.5903. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schumaker K. S., Sze H. Inositol 1,4,5-trisphosphate releases Ca2+ from vacuolar membrane vesicles of oat roots. J Biol Chem. 1987 Mar 25;262(9):3944–3946. [PubMed] [Google Scholar]
- Thomas J. A., Buchsbaum R. N., Zimniak A., Racker E. Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochemistry. 1979 May 29;18(11):2210–2218. doi: 10.1021/bi00578a012. [DOI] [PubMed] [Google Scholar]
- Trewavas A., Gilroy S. Signal transduction in plant cells. Trends Genet. 1991 Nov-Dec;7(11-12):356–361. doi: 10.1016/0168-9525(91)90255-o. [DOI] [PubMed] [Google Scholar]
- Wang Y. H., Duff S. M., Lepiniec L., Crétin C., Sarath G., Condon S. A., Vidal J., Gadal P., Chollet R. Site-directed mutagenesis of the phosphorylatable serine (Ser8) in C4 phosphoenolpyruvate carboxylase from sorghum. The effect of negative charge at position 8. J Biol Chem. 1992 Aug 25;267(24):16759–16762. [PubMed] [Google Scholar]
- van der Veen R., Heimovaara-Dijkstra S., Wang M. Cytosolic alkalinization mediated by abscisic Acid is necessary, but not sufficient, for abscisic Acid-induced gene expression in barley aleurone protoplasts. Plant Physiol. 1992 Oct;100(2):699–705. doi: 10.1104/pp.100.2.699. [DOI] [PMC free article] [PubMed] [Google Scholar]