Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1996 Apr;8(4):601–615. doi: 10.1105/tpc.8.4.601

Far-red light blocks greening of Arabidopsis seedlings via a phytochrome A-mediated change in plastid development.

S A Barnes 1, N K Nishizawa 1, R B Quaggio 1, G C Whitelam 1, N H Chua 1
PMCID: PMC161123  PMID: 8624438

Abstract

We have characterized a far-red-light response that induces a novel pathway for plastid development in Arabidopsis seedlings. This response results in the inability of cotyledons to green upon subsequent white light illumination, and the response is suppressed by exogenous sucrose. Studies with mutants showed that this far-red block of greening is phytochrome A dependent and requires an intact downstream signaling pathway in which FHY1 and FHY3 may be components but in which HY5 is not. This highlights a previously undefined branchpoint in the phytochrome signaling pathway. Ultrastructural analysis showed that the far-red block correlates with both the failure of plastids to accumulate prolamellar bodies and the formation of vesicles in the stroma. We present evidence that the far-red block of greening is the result of severe repression of protochlorophyllide reductase (POR) genes by far-red light coupled with irreversible plastid damage. This results in the temporal separation of phytochrome-mediated POR; repression from light-dependent protochlorophyllide reduction, two processes that normally occur in coordination in white light.

Full Text

The Full Text of this article is available as a PDF (5.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amrani A. E., Suire C., Camara B., Gaudillere J. P., Couee I. Purification and Characterization of a Novel Aminopeptidase, Plastidial Alanine-Aminopeptidase, from the Cotyledons of Etiolated Sugar Beet Seedlings. Plant Physiol. 1995 Sep;109(1):87–94. doi: 10.1104/pp.109.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Apel K. The protochlorophyllide holochrome of barley (Hordeum vulgare L.). Phytochrome-induced decrease of translatable mRNA coding for the NADPH: protochlorophyllide oxidoreductase. Eur J Biochem. 1981 Nov;120(1):89–93. doi: 10.1111/j.1432-1033.1981.tb05673.x. [DOI] [PubMed] [Google Scholar]
  3. Armstrong G. A., Runge S., Frick G., Sperling U., Apel K. Identification of NADPH:protochlorophyllide oxidoreductases A and B: a branched pathway for light-dependent chlorophyll biosynthesis in Arabidopsis thaliana. Plant Physiol. 1995 Aug;108(4):1505–1517. doi: 10.1104/pp.108.4.1505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barnes S. A., Quaggio R. B., Chua N. H. Phytochrome signal-transduction: characterization of pathways and isolation of mutants. Philos Trans R Soc Lond B Biol Sci. 1995 Oct 30;350(1331):67–74. doi: 10.1098/rstb.1995.0139. [DOI] [PubMed] [Google Scholar]
  5. Batschauer A., Apel K. An inverse control by phytochrome of the expression of two nuclear genes in barley (Hordeum vulgare L.). Eur J Biochem. 1984 Sep 17;143(3):593–597. doi: 10.1111/j.1432-1033.1984.tb08411.x. [DOI] [PubMed] [Google Scholar]
  6. Bellemare G., Bartlett S. G., Chua N. H. Biosynthesis of chlorophyll a/b-binding polypeptides in wild type and the chlorina f2 mutant of barley. J Biol Chem. 1982 Jul 10;257(13):7762–7767. [PubMed] [Google Scholar]
  7. Chory J., Nagpal P., Peto C. A. Phenotypic and Genetic Analysis of det2, a New Mutant That Affects Light-Regulated Seedling Development in Arabidopsis. Plant Cell. 1991 May;3(5):445–459. doi: 10.1105/tpc.3.5.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chory J., Peto C., Feinbaum R., Pratt L., Ausubel F. Arabidopsis thaliana mutant that develops as a light-grown plant in the absence of light. Cell. 1989 Sep 8;58(5):991–999. doi: 10.1016/0092-8674(89)90950-1. [DOI] [PubMed] [Google Scholar]
  9. Griffiths W. T. Reconstitution of chlorophyllide formation by isolated etioplast membranes. Biochem J. 1978 Sep 15;174(3):681–692. doi: 10.1042/bj1740681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lam E., Green P. J., Wong M., Chua N. H. Phytochrome activation of two nuclear genes requires cytoplasmic protein synthesis. EMBO J. 1989 Oct;8(10):2777–2783. doi: 10.1002/j.1460-2075.1989.tb08423.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mapleston R. E., Griffiths W. T. Light modulation of the activity of protochlorophyllide reductase. Biochem J. 1980 Jul 1;189(1):125–133. doi: 10.1042/bj1890125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Nagatani A., Reed J. W., Chory J. Isolation and Initial Characterization of Arabidopsis Mutants That Are Deficient in Phytochrome A. Plant Physiol. 1993 May;102(1):269–277. doi: 10.1104/pp.102.1.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Santel H. J., Apel K. The protochlorophyllide holochrome of barley (Hordeum vulgare L.). The effect of light on the NADPH:protochlorophyllide oxidoreductase. Eur J Biochem. 1981 Nov;120(1):95–103. doi: 10.1111/j.1432-1033.1981.tb05674.x. [DOI] [PubMed] [Google Scholar]
  14. Somers D. E., Sharrock R. A., Tepperman J. M., Quail P. H. The hy3 Long Hypocotyl Mutant of Arabidopsis Is Deficient in Phytochrome B. Plant Cell. 1991 Dec;3(12):1263–1274. doi: 10.1105/tpc.3.12.1263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Takahashi T., Gasch A., Nishizawa N., Chua N. H. The DIMINUTO gene of Arabidopsis is involved in regulating cell elongation. Genes Dev. 1995 Jan 1;9(1):97–107. doi: 10.1101/gad.9.1.97. [DOI] [PubMed] [Google Scholar]
  16. Whitelam G. C., Johnson E., Peng J., Carol P., Anderson M. L., Cowl J. S., Harberd N. P. Phytochrome A null mutants of Arabidopsis display a wild-type phenotype in white light. Plant Cell. 1993 Jul;5(7):757–768. doi: 10.1105/tpc.5.7.757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Zhang H., Scheirer D. C., Fowle W. H., Goodman H. M. Expression of antisense or sense RNA of an ankyrin repeat-containing gene blocks chloroplast differentiation in arabidopsis. Plant Cell. 1992 Dec;4(12):1575–1588. doi: 10.1105/tpc.4.12.1575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Zhang H., Wang J., Goodman H. M. Expression of the Arabidopsis Gene Akr Coincides with Chloroplast Development. Plant Physiol. 1994 Dec;106(4):1261–1267. doi: 10.1104/pp.106.4.1261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. van Tuinen A., Kerckhoffs L. H., Nagatani A., Kendrick R. E., Koornneef M. Far-red light-insensitive, phytochrome A-deficient mutants of tomato. Mol Gen Genet. 1995 Jan 20;246(2):133–141. doi: 10.1007/BF00294675. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES